National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Thin Film Electrodes for Electrochromic Devices
Macalík, Michal ; Kadlec, Jaromír (referee) ; Nováková,, Sabina (referee) ; Sedlaříková, Marie (advisor)
The work deals with the deposition of layers for electrochromic device with different methods. Transparent electrically conductive layer of SnO2 was deposited by pyrolytic decomposition of peroxostannate solution. Hydrogen peroxide in starting solution contributes to the oxidation process of growth layers and to increase the electrical conductivity. Active electrochromic layer of WO3 was electrolytic deposited from the peroxotungstic acid solution. Optimal deposition time and the optimal annealing temperature of deposited layers were found. Passive electrochromic layer of V2O5 was deposited using dip-coating method from peroxovanadate solution. A contribution of solution diluted with distilled water was investigated. Found results were used to construct complete electrochromic device with polymer gel electrolyte.
Chemorezistive gas sensor
Venkrbec, Lukáš ; Pytlíček, Zdeněk (referee) ; Prášek, Jan (advisor)
This thesis deals with the detection of gases. Based on the research, the theoretical part is devoted to the principles and construction of chemical gas sensors, especially the chemoresistive gas sensors, mainly with the active layer consisting of metal oxides and carbon nanotubes. In the second half of the theoretical part the carbon nanostructures, their properties and the methodology of preparation are reviewed. The experimental part deals with the type of support structure, preparation of the active layer and the method of its deposition and he principle of detection. In the results and discussion, the thesis focuses on the detailed processing of the results and the evaluation of the response ammonia, the impact of the modifications and procedures. In the end, the results obtained are compared, both with each other and with the relevant literature.
Chemorezistive gas sensor
Venkrbec, Lukáš ; Pytlíček, Zdeněk (referee) ; Prášek, Jan (advisor)
This thesis deals with the detection of gases. Based on the research, the theoretical part is devoted to the principles and construction of chemical gas sensors, especially the chemoresistive gas sensors, mainly with the active layer consisting of metal oxides and carbon nanotubes. In the second half of the theoretical part the carbon nanostructures, their properties and the methodology of preparation are reviewed. The experimental part deals with the type of support structure, preparation of the active layer and the method of its deposition and he principle of detection. In the results and discussion, the thesis focuses on the detailed processing of the results and the evaluation of the response ammonia, the impact of the modifications and procedures. In the end, the results obtained are compared, both with each other and with the relevant literature.
Study of the structure and of interaction with gas molecules of Rh-Sn and Rh-SnO2
Janeček, Petr ; Nehasil, Václav (advisor) ; Jirka, Ivan (referee) ; Bartoš, Igor (referee)
In this work we present the results of the analysis of the surface structures and absorption properties with respect to the CO and O2 molecules of the Sn/Rh and Rh/SnO2 model systems. In the part dedicated to the Sn structures on Rh surfaces with two different orientations - Rh(110) and Rh(111) - we have investigated the development of the core electron levels and valence band during the development of surface reconstructions and absorption of CO molecules. The surface reconstructions of the Sn/Rh(110) systems were studied for the first time. Difference in behaviour w.r.t. Sn/Rh(111) was observed and explanation offered. Finally, on in-situ prepared epitaxial SnO2 layers, the surface reconstruction (4×1) was observed. The CO adsorp- tion properties of Rh on polycrystalline and epitaxial SnO2 layers were also studied and difference in behaviour explained.
Thin Film Electrodes for Electrochromic Devices
Macalík, Michal ; Kadlec, Jaromír (referee) ; Nováková,, Sabina (referee) ; Sedlaříková, Marie (advisor)
The work deals with the deposition of layers for electrochromic device with different methods. Transparent electrically conductive layer of SnO2 was deposited by pyrolytic decomposition of peroxostannate solution. Hydrogen peroxide in starting solution contributes to the oxidation process of growth layers and to increase the electrical conductivity. Active electrochromic layer of WO3 was electrolytic deposited from the peroxotungstic acid solution. Optimal deposition time and the optimal annealing temperature of deposited layers were found. Passive electrochromic layer of V2O5 was deposited using dip-coating method from peroxovanadate solution. A contribution of solution diluted with distilled water was investigated. Found results were used to construct complete electrochromic device with polymer gel electrolyte.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.