National Repository of Grey Literature 16 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Influence of heat treatment on mechanical properties od Inconel 713 LC Ni superalloy
Nopová, Klára ; Válka, Libor (referee) ; Pantělejev, Libor (advisor)
The main aim of this bachelor thesis was evaluation of the influence of heat treatment, HIP processing and of semi-product shape on mechanical properties and microstructure of Ni-superalloy Inconel 713LC. Tensile tests at room temperature and hardness measurement were performed for all types of the samples. Fractographic analysis was conducted after tensile tests for evaluation of the influence of processing on mechanisms of the fracture.
Formation of Diffusion Barriers Using Chemical Vapour Deposition Process
Foltýnek, Jaroslav ; Němec, Karel (referee) ; Čelko, Ladislav (advisor)
Masters thesis deals with formation of diffusion barrier coatings by means of powder mixtures chemical vapor deposition. Its theoretical part is focused on the problems with diffusion barriers formation, where predominantly three most commonly used methods are introduced, i.e. CVD from powder mixtures, active gasses and slurries. The experimental part of master thesis deals with the formation of nickel-aluminide diffusion barriers on Inconel 713LC superalloy substrate, where was for aluminization used six different powder mixtures at the temperature of 800 °C and dwell of 0, 2 and 5 hours.
Relationship between Structure and Properties of cast Ni-alloys
Smékalová, Jana ; Hutařová, Simona (referee) ; Podrábský, Tomáš (advisor)
Nickel superalloys are developed for conditions which request the corrosion resistance, the heat-resisting and the creep-resisting material. They are used for components of air turbine motors and internal combustion turbines. The efficiency of these mechanisms is elevated with increasing combustion temperature so their development is accentuated. This thesis is concerned with a relationship between a structure and properties of nickel superalloys Inconel 713LC and Inconel 738LC in this thesis.
Influence of AlCr Layer to Fatiague Properties of Nickel Superalloy IN 713LC at the Temperature 800°C
Šulák, Ivo ; Julišová, Martina (referee) ; Podrábský, Tomáš (advisor)
The present diploma thesis is focused on the effect of AlCr layer on the low cycle fatigue behaviour of cast polycrystalline superalloy IN713LC at 800°C. Protective layer is made by chemical vapour deposition followed by heat treatment. Fatigue tests were conducted in strain control mode with constant total strain amplitude and strain rate. The fatigue behaviour is assessed by cyclic hardening/softening curves, cyclic stress-strain curves, Manson-Coffin curves and Basquin curves. Microstructure was observed in as-received state and also after cyclic loading by means of optical microscopy and SEM.
Influence of Al and AlSi Layer to Fatiague Properties of Nickel Superalloy IN 713LC at the Temperature 800°C
Šulák, Ivo ; Juliš, Martin (referee) ; Podrábský, Tomáš (advisor)
Nickel based superalloys are mainly used for high-temperature applications in energetic and aerospace industry. They are exposed to extremely aggressive environment at high temperature with interaction between fatigue and creep processes, oxidation and erosion. Application of protective surface coating is the right way how to increase the lifetime while increasing performance of machine. Theme of this bachelor’s thesis is to investigate the fatigue parameters of superalloy In713LC at 800 °C and the comparison of these parameters between materials with a protective coating based on Al or Al-Si and material without coating.
Study of AlSi protective coating after degradation
Vítková, Gabriela ; Řičánková, Veronika (referee) ; Hutařová, Simona (advisor)
Materials used for high temperature applications works in a very aggressive environment (oxidation, hot corrosion, erosion, fatigue, creep). Demands on these materials are very high. Nickel-based superalloys show the certain stability in this environment. Improved resistance to oxidation and hot corrosion can be achieved by using protective layers such as diffusion barriers. This thesis is focused on changes of microstructure and properties of AlSi layer applied by „slurry“ method on nickel-based superalloy Inconel 713 LC, due to long-term thermal exposition at 800, 900 a 1000 °C.
Fatigue failure mechanism of nickel-based superalloy Inconel 713LC under 800°C
Smékalová, Jana ; Juliš, Martin (referee) ; Hutařová, Simona (advisor)
Nickel superalloys are used for high-temperature application in energetic and aerospace industry. They are exposed to aggressive environment at high temperatures with the interactions between fatigue and creep processes, high-temperature oxidation, corrosion and erosion. Lifetime extension of such strained parts while increasing the performance of particular machine is possible by applying protective surface coatings. The subject of this work is to investigate the fatigue failure mechanisms of superalloy Inconel 713LC at 800 °C and to compare these mechanisms between material with a protective coating based on Al-Si and material without coating. The location of initiation fatigue cracks, their propagation and the fatigue crack propagation rate in some areas were analyzed by optical microscopy, scanning electron microscopy and confocal laser scanning microscopy. Based on previous research it was found that the application of the coating AlSi has a positive effect on lifetime of alloy Inconel 713LC. These results were confirmed and estimated in the diploma thesis.
Effect of casting conditions and heat treatment on high temperature low cycle fatigue performance of nickel superalloy Inconel 713LC
Šulák, Ivo ; Obrtlík, Karel ; Hrbáček, Karel
The present work is focused on the study of high temperature low cycle fatigue behaviour of Inconel 713LC produced by a vibratory investment casting (VIC) in as-cast conditions and in the condition after heat treatment (HT) consisting of hot isostatic pressing (HIP) followed by precipitation hardening. Low cycle fatigue tests were carried out on cylindrical specimens in symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 800 °C in air. Hardening/softening curves and fatigue life curves of both materials were assessed and compared with data of Inconel 713LC produced by a conventional investment casting (CIC). Cyclic hardening can be observed in the high amplitude domain while saturated stress response is apparent for low amplitude cycling for all material batches. Data presented in Basquin representation show an increase in fatigue life of both VIC batches compared to the CIC batch, however, no effect of HT on fatigue life of Inconel 713LC produced by VIC was observed. In contrast, the heat treated Inconel 713LC demonstrates slightly higher fatigue life in Coffin-Manson representation. The microstructure of both superalloys was studied by means of scanning electron microscopy (SEM). The microstructure of superalloy is characterized by dendritic grains with casting defects. It comprises the γ matrix, cubic γ´ precipitates, eutectics and carbides. The effect of the VIC and HT on fatigue performance and microstructure of Inconel 713LC is discussed.
Influence of heat treatment on mechanical properties od Inconel 713 LC Ni superalloy
Nopová, Klára ; Válka, Libor (referee) ; Pantělejev, Libor (advisor)
The main aim of this bachelor thesis was evaluation of the influence of heat treatment, HIP processing and of semi-product shape on mechanical properties and microstructure of Ni-superalloy Inconel 713LC. Tensile tests at room temperature and hardness measurement were performed for all types of the samples. Fractographic analysis was conducted after tensile tests for evaluation of the influence of processing on mechanisms of the fracture.
Influence of AlCr Layer to Fatiague Properties of Nickel Superalloy IN 713LC at the Temperature 800°C
Šulák, Ivo ; Julišová, Martina (referee) ; Podrábský, Tomáš (advisor)
The present diploma thesis is focused on the effect of AlCr layer on the low cycle fatigue behaviour of cast polycrystalline superalloy IN713LC at 800°C. Protective layer is made by chemical vapour deposition followed by heat treatment. Fatigue tests were conducted in strain control mode with constant total strain amplitude and strain rate. The fatigue behaviour is assessed by cyclic hardening/softening curves, cyclic stress-strain curves, Manson-Coffin curves and Basquin curves. Microstructure was observed in as-received state and also after cyclic loading by means of optical microscopy and SEM.

National Repository of Grey Literature : 16 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.