National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Influence of Si surface passivation on growth and ordering of nanostructures
Matvija, Peter ; Kocán, Pavel (advisor) ; Rezek, Bohuslav (referee) ; de la Torre, Bruno (referee)
Silicon is currently the most widely used semiconductor material with applications ranging from solar cells and sensors to electronic devices. Surface functionalization of silicon with molecular monolayers can be used to tune properties of the material toward a desired application. However, site-specific adsorption of molecules or molecular patterning on silicon surfaces is a difficult task due to the high reactivity of silicon. In this work, we use scanning tunneling microscopy, ab-initio calculations and kinetic Monte Carlo simulations to study adsorption of organic molecules on a bare and thallium-passivated Si(111) surface. We show that the polarity of molecules has a large impact on bonding of the molecules with the bare surface. We demonstrate that, in comparison with the bare surface, molecules or single-atom adsorbates deposited on the Tl-passivated surface have significantly higher mobility. The increased mobility induces formation of 2D gases on the surface and enables formation of self-assembled molecular structures. We propose a novel method to directly visualize the 2D surface gases and we show that a phase of surface gases containing molecule-bound dipoles can be controlled by a non-homogeneous electric field. 1
Influence of Si surface passivation on growth and ordering of nanostructures
Matvija, Peter ; Kocán, Pavel (advisor) ; Rezek, Bohuslav (referee) ; de la Torre, Bruno (referee)
Silicon is currently the most widely used semiconductor material with applications ranging from solar cells and sensors to electronic devices. Surface functionalization of silicon with molecular monolayers can be used to tune properties of the material toward a desired application. However, site-specific adsorption of molecules or molecular patterning on silicon surfaces is a difficult task due to the high reactivity of silicon. In this work, we use scanning tunneling microscopy, ab-initio calculations and kinetic Monte Carlo simulations to study adsorption of organic molecules on a bare and thallium-passivated Si(111) surface. We show that the polarity of molecules has a large impact on bonding of the molecules with the bare surface. We demonstrate that, in comparison with the bare surface, molecules or single-atom adsorbates deposited on the Tl-passivated surface have significantly higher mobility. The increased mobility induces formation of 2D gases on the surface and enables formation of self-assembled molecular structures. We propose a novel method to directly visualize the 2D surface gases and we show that a phase of surface gases containing molecule-bound dipoles can be controlled by a non-homogeneous electric field. 1

Interested in being notified about new results for this query?
Subscribe to the RSS feed.