No exact match found for Zigo,, Juraj, using Zigo Juraj instead...
National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Design of secondary electron detector for ultrahigh vacuum electron microscope
Skladaný, Roman ; Zigo, Juraj (referee) ; Bábor, Petr (advisor)
In this master’s thesis, a mechanical design of an in-column secondary electrons (SE) detector is presented. It is an ultravacuum compatible fibre-scintillation detector designed for use in an ultrahigh vacuum scanning electron microscope (UHV SEM). The designed in-column SE detector was manufactured and tested upon overcoming R&D challenges. The first section of this thesis deals with theoretical basis needed for understanding of functional principles of UHV SEM system and means of SE’s detection. In the second section, mechanical design of the in-column SE detector is described. The last section describes functionality of the designed detector. Effectiveness of light shielding of the detector was tested and the detective quantum efficiency was measured. Finally, images created by the designed in-column detector and an in-chamber SE detector were evaluated and compared.
Optimization of UHV SEM for nanostructure study in wide temperature range
Axman, Tomáš ; Zigo,, Juraj (referee) ; Bábor, Petr (advisor)
This diploma thesis deals with the optimization of ultra-high vacuum scanning electron microscope - UHV SEM, which is developed within the Amispec project in cooperation with BUT, Institute of Scientific Instruments of the Czech Academy of Science and Tescan Brno, s.r.o. The theoretical part deals with the description of the actual state of the developed equipment and the research of competing systems. The next part describes the optimization of the sample holder and the pallet receptor for studying nanostructures over a wide range of temperatures. Part of the optimization is the sapphire thermal diode development and experimental verification of the functionality of the designed components. This is followed by the verification of the functionality of the whole system for the transport of samples to the UHV area, deposition with effusion cell and in-situ observations.
Design of secondary electron detector for ultrahigh vacuum electron microscope
Skladaný, Roman ; Zigo, Juraj (referee) ; Bábor, Petr (advisor)
In this master’s thesis, a mechanical design of an in-column secondary electrons (SE) detector is presented. It is an ultravacuum compatible fibre-scintillation detector designed for use in an ultrahigh vacuum scanning electron microscope (UHV SEM). The designed in-column SE detector was manufactured and tested upon overcoming R&D challenges. The first section of this thesis deals with theoretical basis needed for understanding of functional principles of UHV SEM system and means of SE’s detection. In the second section, mechanical design of the in-column SE detector is described. The last section describes functionality of the designed detector. Effectiveness of light shielding of the detector was tested and the detective quantum efficiency was measured. Finally, images created by the designed in-column detector and an in-chamber SE detector were evaluated and compared.
Optimization of UHV SEM for nanostructure study in wide temperature range
Axman, Tomáš ; Zigo,, Juraj (referee) ; Bábor, Petr (advisor)
This diploma thesis deals with the optimization of ultra-high vacuum scanning electron microscope - UHV SEM, which is developed within the Amispec project in cooperation with BUT, Institute of Scientific Instruments of the Czech Academy of Science and Tescan Brno, s.r.o. The theoretical part deals with the description of the actual state of the developed equipment and the research of competing systems. The next part describes the optimization of the sample holder and the pallet receptor for studying nanostructures over a wide range of temperatures. Part of the optimization is the sapphire thermal diode development and experimental verification of the functionality of the designed components. This is followed by the verification of the functionality of the whole system for the transport of samples to the UHV area, deposition with effusion cell and in-situ observations.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.