National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Orbital and internal dynamics of terrestrial planets
Walterová, Michaela ; Běhounková, Marie (advisor) ; Efroimsky, Michael (referee) ; Brož, Miroslav (referee)
Title: Orbital and internal dynamics of terrestrial planets Author: Michaela Walterová Department: Department of Geophysics Supervisor: RNDr. Marie Běhounková, Ph.D., Department of Geophysics Abstract: Close-in exoplanets are subjected to intense tidal interaction with the host star and their secular evolution is strongly affected by the resulting tidal dissipation. The tidal dissipation not only provides an additional heat source for the planet's internal dynamics but it also contributes to the evolution of the planet's spin rate and orbital elements. At the same time, the tidal dissipation itself is also determined by the planet's thermal state and by the spin-orbital parameters. The evolutions of the orbit and of the interior are, therefore, intrinsically linked. In this work, we combine analytical and numerical techniques to gain insight into the interconnection between the internal properties and the orbital evolution, with special focus on the role of tides. After a general study of parametric dependencies of the tidal heating and tidal locking, we present a semi-analytical model assessing the coupled tidally-induced thermal-orbital evolution in systems consisting of a host star and one or two planets. Specifically, we study the thermal-orbital evolution in three systems inspired by existing low-mass...
Orbital and internal dynamics of terrestrial planets
Walterová, Michaela ; Běhounková, Marie (advisor) ; Efroimsky, Michael (referee) ; Brož, Miroslav (referee)
Title: Orbital and internal dynamics of terrestrial planets Author: Michaela Walterová Department: Department of Geophysics Supervisor: RNDr. Marie Běhounková, Ph.D., Department of Geophysics Abstract: Close-in exoplanets are subjected to intense tidal interaction with the host star and their secular evolution is strongly affected by the resulting tidal dissipation. The tidal dissipation not only provides an additional heat source for the planet's internal dynamics but it also contributes to the evolution of the planet's spin rate and orbital elements. At the same time, the tidal dissipation itself is also determined by the planet's thermal state and by the spin-orbital parameters. The evolutions of the orbit and of the interior are, therefore, intrinsically linked. In this work, we combine analytical and numerical techniques to gain insight into the interconnection between the internal properties and the orbital evolution, with special focus on the role of tides. After a general study of parametric dependencies of the tidal heating and tidal locking, we present a semi-analytical model assessing the coupled tidally-induced thermal-orbital evolution in systems consisting of a host star and one or two planets. Specifically, we study the thermal-orbital evolution in three systems inspired by existing low-mass...

See also: similar author names
1 WALTEROVÁ, Markéta
2 Walterová, Marcela
2 Walterová, Martina
Interested in being notified about new results for this query?
Subscribe to the RSS feed.