National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Program-controlled freeze drying for the preparation of the delivery system of native hyaluronan and hydrophobic molecules
Waczulíková, Kristína ; Sedláček, Petr (referee) ; Enev, Vojtěch (advisor)
The amphiphilic nature of the hyaluronan biopolymer facilitates interactions between its hydrophobic portions of the chain and the hydrophobic ligands, making it one of the promising compounds that can be used as a suitable carrier for drug delivery. Therefore, the aim of this diploma work was by means of a program-controlled freeze-drying to prepare a system based on native hyaluronan, which would be capable of transporting hydrophobic drugs. Perylene, pyrene, prodan and 1,6-diphenyl-1,3,5-hexatriene fluorescence probes were used as model compounds to simulate hydrophobic drug-hyaluronan interactions. Freeze-drying efficiency was studied using infrared spectrometry and scanning electron microscopy. ATR-FTIR spectrometry confirmed for all probes but pyrene the hydrophobic interactions between the hyaluronan and probe molecules based on the presence of the C=C bond valence vibration absorption band in the aromatic probe rings. From the IR spectra, it was not possible to confirm with certainty the presence of residual tert-butyl alcohol in the samples. SEM photographs revealed that increasing the pressure during drying process had a positive effect on the quality of the lyophilized sample in the second series of samples. Interactions of individual fluorescent probes with hyaluronan were studied using steady-state and time-resolved fluorescence spectrometry. Positive results have been obtained, indicating the presence of fluorescent probes interacting with the hydrophobic regions of the hyaluronan chains. The results of this work can contribute to the development of carrier systems in the field of targeted drug distribution.
Determination of Paracetamol content in selected drugs using ATR-FTIR spectrometry
Waczulíková, Kristína ; Sedláček, Petr (referee) ; Enev, Vojtěch (advisor)
This bachelor thesis deals with determination of paracetamol content in selected drugs by ATR-FTIR spectrometry and aims to design and optimize determination of paracetamol in dosage forms by a direct measurement of the sample, called ‘dry way’. Tablets of three drugs containing paracetamol have been studied. Wavelength ranges were determined from the measured FTIR spectra as regions where the absorptions of fillers (microcrystal cellulose, starch and magnesium stearate) were minimal. Absorption bands of paracetamol were selected at the wavenumbers of 1 503 cm-1 and 1 224 cm-1 in order to construct a calibration curve. The contents of paracetamol in the drug tablets were calculated using calibration curves obtained by the method of simple regression analysis. The lowest deviation from the amount of 500 mg paracetamol per tablet as reported by the manufacturer was from the calibration curve for paracetamol with microcrystalline cellulose. The determined amounts of paracetamol per tablet in the selected drugs lied within range 493.5–505.5 mg. These results point to the conclusion that the ATR-FTIR spectrometry method can be used for the quantitative determination of paracetamol in drugs using direct measurement, as deviations from the reference value of 500 mg did not exceed 1.5 % for cellulose and 3.85 % for magnesium stearate and therefore are within acceptable limits for the exploratory study.
Program-controlled freeze drying for the preparation of the delivery system of native hyaluronan and hydrophobic molecules
Waczulíková, Kristína ; Sedláček, Petr (referee) ; Enev, Vojtěch (advisor)
The amphiphilic nature of the hyaluronan biopolymer facilitates interactions between its hydrophobic portions of the chain and the hydrophobic ligands, making it one of the promising compounds that can be used as a suitable carrier for drug delivery. Therefore, the aim of this diploma work was by means of a program-controlled freeze-drying to prepare a system based on native hyaluronan, which would be capable of transporting hydrophobic drugs. Perylene, pyrene, prodan and 1,6-diphenyl-1,3,5-hexatriene fluorescence probes were used as model compounds to simulate hydrophobic drug-hyaluronan interactions. Freeze-drying efficiency was studied using infrared spectrometry and scanning electron microscopy. ATR-FTIR spectrometry confirmed for all probes but pyrene the hydrophobic interactions between the hyaluronan and probe molecules based on the presence of the C=C bond valence vibration absorption band in the aromatic probe rings. From the IR spectra, it was not possible to confirm with certainty the presence of residual tert-butyl alcohol in the samples. SEM photographs revealed that increasing the pressure during drying process had a positive effect on the quality of the lyophilized sample in the second series of samples. Interactions of individual fluorescent probes with hyaluronan were studied using steady-state and time-resolved fluorescence spectrometry. Positive results have been obtained, indicating the presence of fluorescent probes interacting with the hydrophobic regions of the hyaluronan chains. The results of this work can contribute to the development of carrier systems in the field of targeted drug distribution.
Determination of Paracetamol content in selected drugs using ATR-FTIR spectrometry
Waczulíková, Kristína ; Sedláček, Petr (referee) ; Enev, Vojtěch (advisor)
This bachelor thesis deals with determination of paracetamol content in selected drugs by ATR-FTIR spectrometry and aims to design and optimize determination of paracetamol in dosage forms by a direct measurement of the sample, called ‘dry way’. Tablets of three drugs containing paracetamol have been studied. Wavelength ranges were determined from the measured FTIR spectra as regions where the absorptions of fillers (microcrystal cellulose, starch and magnesium stearate) were minimal. Absorption bands of paracetamol were selected at the wavenumbers of 1 503 cm-1 and 1 224 cm-1 in order to construct a calibration curve. The contents of paracetamol in the drug tablets were calculated using calibration curves obtained by the method of simple regression analysis. The lowest deviation from the amount of 500 mg paracetamol per tablet as reported by the manufacturer was from the calibration curve for paracetamol with microcrystalline cellulose. The determined amounts of paracetamol per tablet in the selected drugs lied within range 493.5–505.5 mg. These results point to the conclusion that the ATR-FTIR spectrometry method can be used for the quantitative determination of paracetamol in drugs using direct measurement, as deviations from the reference value of 500 mg did not exceed 1.5 % for cellulose and 3.85 % for magnesium stearate and therefore are within acceptable limits for the exploratory study.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.