National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Processing and Properties of 1D and 2D Boron Nitride Nanomaterials Reinforced Glass Composites
Saggar, Richa ; Cihlář, Jaroslav (referee) ; Tatarko, Peter (referee) ; Dlouhý, Ivo (advisor)
Glasses and ceramics offer several unique characteristics over polymers or metals. However, they suffer from a shortcoming due to their brittle nature, falling short in terms of fracture toughness and mechanical strength. The aim of this work is to reinforce borosilicate glass matrix with reinforcements to increase the fracture toughness and strength of the glass. Boron nitride nanomaterials, i.e. nanotubes and nanosheets have been used as possible reinforcements for the borosilicate glass matrix. The tasks of the thesis are many fold which include: 1. Reinforcement of commercially derived and morphologically different (bamboo like and cylinder like) boron nitride nanotubes in borosilicate glass with the concentration of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. Same process was repeated with reinforcing cleaned boron nitride nanotubes (after acid purification) into the borosilicate glass with similar concentrations. 2. Production of boron nitride nanosheets using liquid exfoliation technique to produce high quality and high aspect ratio nanosheets. These boron nitride nanosheets were reinforced in the borosilicate glass matrix with concentrations of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. The samples were consolidated using spark plasma sintering. These composites were studied in details in terms of material analysis like thermo-gravimetric analysis, detailed scanning electron microscopy and transmission electron microscopy for the quality of reinforcements etc.; microstructure analysis which include the detailed study of the composite powder samples, the densities of bulk composite samples etc; mechanical properties which include fracture toughness, flexural strength, micro-hardness, Young’s modulus etc. and; tribological properties like scratch resistance and wear resistance. Cleaning process of boron nitride nanotubes lead to reduction in the Fe content (present in boron nitride nanotubes during their production as a catalyst) by ~54%. This leads to an improvement of ~30% of fracture toughness measured by chevron notch technique for 5 wt% boron nitride nanotubes reinforced borosilicate glass. It also contributed to the improvement of scratch resistance by ~26% for the 5 wt% boron nitride nanotubes reinforced borosilicate glass matrix. On the other hand, boron nitride nanosheets were successfully produced using liquid exfoliation technique with average length was ~0.5 µm and thickness of the nanosheets was between 4-30 layers. It accounted to an improvement of ~45% for both fracture toughness and flexural strength by reinforcing 5 wt% of boron nitride nanosheets. The wear rates reduced by ~3 times while the coefficient of friction was reduced by ~23% for 5 wt% boron nitride nanosheets reinforcements. Resulting improvements in fracture toughness and flexural strength in the composite materials were observed due to high interfacial bonding between the boron nitride nanomaterials and borosilicate glass matrix resulting in efficient load transfer. Several toughening and strengthening mechanisms like crack bridging, crack deflection and significant pull-out were observed in the matrix. It was also observed that the 2D reinforcement served as more promising candidate for reinforcements compared to 1D reinforcements. It was due to several geometrical advantages like high surface area, rougher surface morphology, and better hindrance in two dimensions rather than just one dimension in nanotubes.
Behaviour of the Interface of Low Toughness Materials
Halasová, Martina ; Pabst, Willi (referee) ; Tatarko, Peter (referee) ; Fintová, Stanislava (referee) ; Chlup, Zdeněk (advisor)
The work is focused on evaluation of factors influencing behaviour of interface in low toughness ceramic materials reinforced with fibres. The main aim was to characterise processing effects influencing the quality of fibre-matrix interface, with respect to final behaviour of composites at various loading type. The partial goal was to map the possibility of influencing the composite material by choice of matrix material, eventually by change of its processing, leading to change of interfacial properties without need of modification of reinforcement surface. The materials used in studied composites as a matrix were based on thermal transformation of polymer precursors, thus, the resulting materials were characterised in partially as well as in fully pyrolyzed state. Behaviour of interface in cpomposite materials was first evaluated from the global behaviour (i.e., change of mechanical properties) and in chosen representative composites also from the point of local changes in close surrounding of the interface (i.e., microstructure, chemical processes, fracture-mechanic processes, etc.) due to thermal exposition. In experiment were used particularly composite materials prepared by pyrolysis of polysiloxane resins reinforced by basalt fibres or Nextel™720 fibres. With respect to thermal resistance of the reinforcement, the basalt reinforced composites contained only partially pyrolyzed matrix (i.e., to temperature of 800°C), and in composites with Nextel™720 reinforcement was the matrix in form of fully pyrolyzed polymer into ceramic (SiOC). At partial pyrolysis of polysiloxane resin occurs rapid change of behaviour at temperature of 600°C. It was demonstrated, that around this temperature the formed interface with basalt fibre exhibits optimum adhesion/strength, allowing to reach sufficient level of composite strength at acceptable fracture toughness. Above temperature of 750°C occur significant difusion processes in the area of the interface and formation of new crystalline phases in the fibre, what deteriorates the fibre strength, and on the contrary, strengthen the interface cohesion, what leads to degradation of properties of the whole composite. At composite materials determined for high temperatures, reinforced by Nextel™720 fibres, was detected significant resistivity against oxidation caused especially by fully pyrolyzed matrix. As similarly important factor was observed the formation of mullite interphase in surface area of the fibre. Volume changes caused by formation of the interphase, difusional transport of the matter and thermal exposition led to formation of thermally and stress-induced micro-cracks, weakening interfacial surrounding in matrix as well as in fibre. This mechanism in contrast to amplifying chemical bond between fibre and matrix led to preserving of the composite properties also at high temperatures up to 1500°C. The work also dealed with effects of loading rate, where in contrast to static loading were observed different failure mechanisms. Realized research led to description and explanation of the influence of the fibre-matrix interface by change of matrix material processing parameters, which allow processing of economically advantageous and thermally stable composite.
Behaviour of the Interface of Low Toughness Materials
Halasová, Martina ; Pabst, Willi (referee) ; Tatarko, Peter (referee) ; Fintová, Stanislava (referee) ; Chlup, Zdeněk (advisor)
The work is focused on evaluation of factors influencing behaviour of interface in low toughness ceramic materials reinforced with fibres. The main aim was to characterise processing effects influencing the quality of fibre-matrix interface, with respect to final behaviour of composites at various loading type. The partial goal was to map the possibility of influencing the composite material by choice of matrix material, eventually by change of its processing, leading to change of interfacial properties without need of modification of reinforcement surface. The materials used in studied composites as a matrix were based on thermal transformation of polymer precursors, thus, the resulting materials were characterised in partially as well as in fully pyrolyzed state. Behaviour of interface in cpomposite materials was first evaluated from the global behaviour (i.e., change of mechanical properties) and in chosen representative composites also from the point of local changes in close surrounding of the interface (i.e., microstructure, chemical processes, fracture-mechanic processes, etc.) due to thermal exposition. In experiment were used particularly composite materials prepared by pyrolysis of polysiloxane resins reinforced by basalt fibres or Nextel™720 fibres. With respect to thermal resistance of the reinforcement, the basalt reinforced composites contained only partially pyrolyzed matrix (i.e., to temperature of 800°C), and in composites with Nextel™720 reinforcement was the matrix in form of fully pyrolyzed polymer into ceramic (SiOC). At partial pyrolysis of polysiloxane resin occurs rapid change of behaviour at temperature of 600°C. It was demonstrated, that around this temperature the formed interface with basalt fibre exhibits optimum adhesion/strength, allowing to reach sufficient level of composite strength at acceptable fracture toughness. Above temperature of 750°C occur significant difusion processes in the area of the interface and formation of new crystalline phases in the fibre, what deteriorates the fibre strength, and on the contrary, strengthen the interface cohesion, what leads to degradation of properties of the whole composite. At composite materials determined for high temperatures, reinforced by Nextel™720 fibres, was detected significant resistivity against oxidation caused especially by fully pyrolyzed matrix. As similarly important factor was observed the formation of mullite interphase in surface area of the fibre. Volume changes caused by formation of the interphase, difusional transport of the matter and thermal exposition led to formation of thermally and stress-induced micro-cracks, weakening interfacial surrounding in matrix as well as in fibre. This mechanism in contrast to amplifying chemical bond between fibre and matrix led to preserving of the composite properties also at high temperatures up to 1500°C. The work also dealed with effects of loading rate, where in contrast to static loading were observed different failure mechanisms. Realized research led to description and explanation of the influence of the fibre-matrix interface by change of matrix material processing parameters, which allow processing of economically advantageous and thermally stable composite.
Processing and Properties of 1D and 2D Boron Nitride Nanomaterials Reinforced Glass Composites
Saggar, Richa ; Cihlář, Jaroslav (referee) ; Tatarko, Peter (referee) ; Dlouhý, Ivo (advisor)
Glasses and ceramics offer several unique characteristics over polymers or metals. However, they suffer from a shortcoming due to their brittle nature, falling short in terms of fracture toughness and mechanical strength. The aim of this work is to reinforce borosilicate glass matrix with reinforcements to increase the fracture toughness and strength of the glass. Boron nitride nanomaterials, i.e. nanotubes and nanosheets have been used as possible reinforcements for the borosilicate glass matrix. The tasks of the thesis are many fold which include: 1. Reinforcement of commercially derived and morphologically different (bamboo like and cylinder like) boron nitride nanotubes in borosilicate glass with the concentration of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. Same process was repeated with reinforcing cleaned boron nitride nanotubes (after acid purification) into the borosilicate glass with similar concentrations. 2. Production of boron nitride nanosheets using liquid exfoliation technique to produce high quality and high aspect ratio nanosheets. These boron nitride nanosheets were reinforced in the borosilicate glass matrix with concentrations of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. The samples were consolidated using spark plasma sintering. These composites were studied in details in terms of material analysis like thermo-gravimetric analysis, detailed scanning electron microscopy and transmission electron microscopy for the quality of reinforcements etc.; microstructure analysis which include the detailed study of the composite powder samples, the densities of bulk composite samples etc; mechanical properties which include fracture toughness, flexural strength, micro-hardness, Young’s modulus etc. and; tribological properties like scratch resistance and wear resistance. Cleaning process of boron nitride nanotubes lead to reduction in the Fe content (present in boron nitride nanotubes during their production as a catalyst) by ~54%. This leads to an improvement of ~30% of fracture toughness measured by chevron notch technique for 5 wt% boron nitride nanotubes reinforced borosilicate glass. It also contributed to the improvement of scratch resistance by ~26% for the 5 wt% boron nitride nanotubes reinforced borosilicate glass matrix. On the other hand, boron nitride nanosheets were successfully produced using liquid exfoliation technique with average length was ~0.5 µm and thickness of the nanosheets was between 4-30 layers. It accounted to an improvement of ~45% for both fracture toughness and flexural strength by reinforcing 5 wt% of boron nitride nanosheets. The wear rates reduced by ~3 times while the coefficient of friction was reduced by ~23% for 5 wt% boron nitride nanosheets reinforcements. Resulting improvements in fracture toughness and flexural strength in the composite materials were observed due to high interfacial bonding between the boron nitride nanomaterials and borosilicate glass matrix resulting in efficient load transfer. Several toughening and strengthening mechanisms like crack bridging, crack deflection and significant pull-out were observed in the matrix. It was also observed that the 2D reinforcement served as more promising candidate for reinforcements compared to 1D reinforcements. It was due to several geometrical advantages like high surface area, rougher surface morphology, and better hindrance in two dimensions rather than just one dimension in nanotubes.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.