National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Vazba paralogů EXO70 na ATG8 a funkční rozdělení rodiny EXO70 dle účasti v autofagii (Arabidopsis thaliana).
Semerádová, Hana ; Kulich, Ivan (advisor) ; Motyka, Václav (referee)
The exocyst, an octameric protein complex conserved among all eukaryotes, mediates tethering of the vesicle prior to its fusion with the target membrane. Apart from the function of exocyst in exocytosis, new studies from both mammalian and plant fields report its involvement in the cellular self-eating process called autophagy. In land plants the number of paralogs of some exocyst subunits is extraordinarily large. There are 23 paralogs of Exo70 subunit in Arabidopsis thaliana. It is supposed that these paralogs have acquired functional specialization during the evolution - including involvement in autophagy. Using yeast two- hybrid assay it is shown here that Exo70B1 and Exo70B2, but not other Arabidopsis Exo70 paralogs interact with Atg8, an autophagosomal marker. The proximity of these two paralogs and Atg8 in vivo was confirmed by independent Förster resonance energy transfer (FRET) method. Interestingly, interaction of Atg8f with Exo70B2 paralog appears to be stronger than with Exo70B1. Exo70B1-mRUBY expressed under the natural promoter shows punctate membrane structures that are mostly static. That changes after the tunicamycin treatment - movement of some of these dots was induced. Homology modeling of Exo70B1 and Exo70B2 proteins tertiary structure in combination with bioinformatic prediction based...
Vazba paralogů EXO70 na ATG8 a funkční rozdělení rodiny EXO70 dle účasti v autofagii (Arabidopsis thaliana).
Semerádová, Hana ; Kulich, Ivan (advisor) ; Motyka, Václav (referee)
The exocyst, an octameric protein complex conserved among all eukaryotes, mediates tethering of the vesicle prior to its fusion with the target membrane. Apart from the function of exocyst in exocytosis, new studies from both mammalian and plant fields report its involvement in the cellular self-eating process called autophagy. In land plants the number of paralogs of some exocyst subunits is extraordinarily large. There are 23 paralogs of Exo70 subunit in Arabidopsis thaliana. It is supposed that these paralogs have acquired functional specialization during the evolution - including involvement in autophagy. Using yeast two- hybrid assay it is shown here that Exo70B1 and Exo70B2, but not other Arabidopsis Exo70 paralogs interact with Atg8, an autophagosomal marker. The proximity of these two paralogs and Atg8 in vivo was confirmed by independent Förster resonance energy transfer (FRET) method. Interestingly, interaction of Atg8f with Exo70B2 paralog appears to be stronger than with Exo70B1. Exo70B1-mRUBY expressed under the natural promoter shows punctate membrane structures that are mostly static. That changes after the tunicamycin treatment - movement of some of these dots was induced. Homology modeling of Exo70B1 and Exo70B2 proteins tertiary structure in combination with bioinformatic prediction based...
Vesicular trafficking into the plant vacuole
Semerádová, Hana ; Kulich, Ivan (advisor) ; Vosolsobě, Stanislav (referee)
Vacuole is very important plant cell organelle which can occupy 90% of cell volume. It provides wide range of functions. Considering enormous size of the vacuole, vesicle trafficking into the plant vacuole is major vesicle movement inside the cell. Transport pathway into the vacuole is very dynamic field of plant cell biology. This sorting machinery shares similarities within all eukaryotes, but plants also have their own specificities. Soluble cargo is targeted through secretory pathways by vacuolar sorting receptors (VSRs). These proteins due to its transmembrane localization can interact with sorted cargo and take it to the right organelle within the cell. Membrane fusion is facilitated with Rab-GTPase and SNARE protein complexes. A special kind of vesicle traffic is autophagy, the self consuming process that protects the cell from various type of stress or enables apoptosis.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.