National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Computational modelling of function of the human vocal tract
Ryšavý, Antonín ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
In the first part of this bachelor's thesis is a brief summary of the biomechanics of the creation of the human voice and an overview of the published computational models of the vocal tract and the area around the head. The second part deals with the computational models of the human vocal tract set to the pronouncing the Czech vowels /a:/ and /i:/ with using the method of transfer matrices and the finite element method. By these methods is perform modal and harmonic analysis. Are investigated the natural frequencies and own vibration shapes of both vowels and course of sound pressure in a specific areas of the vocal tract. The method of transfer matrices is highly depend on the geometry of the tract, particularly on the density of the reference sections and its results in this thesis do not completely agree with the results in the literature. Finite element method is more accurate and its results agree well with results reported in the literature, but the opposite of the transfer matrices method is significantly time consuming. Method of the transfer matrices is more suitable for a large number of calculations or tuning certain parameters. Models created in this bachelor's thesis can serve for the analyse of pathology of voice production, eventually for prediction of surgical procedures in the area of the vocal tract.
Computational modelling of voice propagation around the human head using finite element method
Ryšavý, Antonín ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
In the first part of this master's thesis there is briefly presented the biomechanics of the human voice creation and an overview of the hitherto published computational models of the vocal tract and dissemination of the acoustic waves around the human head. The second part of the thesis deals with the creation of the computational model of a dissemination of the acoustic waves through vocal tract and further into a space around the head during the pronouncing of the Czech vowel /a:/. The vocal tract is excited by a harmonic signal in the place of vocal chords. On the surface of the vocal tract and the part of the head including hair and skin there is defined an acoustic absorption. The dissemination of the acoustic waves in the vocal tract, in the near field around the mouth, in the area around the head and in the points on the cheeks is detailed mapped. The dissemination of the acoustic waves is analyzed in the points where the speech microphones are placed. Acoustic pressure dependence on frequency, transmission functions between defined points and the acoustic pressure amplitudes depending on the distance from the mouth are obtained. In particular, the frequency distortion of the spectra is observed at the points indicated. Furthermore, the radiation impedance in the mouth area is evaluated. The results obtained are compared with the results of the hitherto published experimental measurements and can be used for the exact measurement of human voice or for the frequency correction of the microphones during the scann of the speech and sing placced in the analyzed points.
Computational modelling of voice propagation around the human head using finite element method
Ryšavý, Antonín ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
In the first part of this master's thesis there is briefly presented the biomechanics of the human voice creation and an overview of the hitherto published computational models of the vocal tract and dissemination of the acoustic waves around the human head. The second part of the thesis deals with the creation of the computational model of a dissemination of the acoustic waves through vocal tract and further into a space around the head during the pronouncing of the Czech vowel /a:/. The vocal tract is excited by a harmonic signal in the place of vocal chords. On the surface of the vocal tract and the part of the head including hair and skin there is defined an acoustic absorption. The dissemination of the acoustic waves in the vocal tract, in the near field around the mouth, in the area around the head and in the points on the cheeks is detailed mapped. The dissemination of the acoustic waves is analyzed in the points where the speech microphones are placed. Acoustic pressure dependence on frequency, transmission functions between defined points and the acoustic pressure amplitudes depending on the distance from the mouth are obtained. In particular, the frequency distortion of the spectra is observed at the points indicated. Furthermore, the radiation impedance in the mouth area is evaluated. The results obtained are compared with the results of the hitherto published experimental measurements and can be used for the exact measurement of human voice or for the frequency correction of the microphones during the scann of the speech and sing placced in the analyzed points.
Computational modelling of function of the human vocal tract
Ryšavý, Antonín ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
In the first part of this bachelor's thesis is a brief summary of the biomechanics of the creation of the human voice and an overview of the published computational models of the vocal tract and the area around the head. The second part deals with the computational models of the human vocal tract set to the pronouncing the Czech vowels /a:/ and /i:/ with using the method of transfer matrices and the finite element method. By these methods is perform modal and harmonic analysis. Are investigated the natural frequencies and own vibration shapes of both vowels and course of sound pressure in a specific areas of the vocal tract. The method of transfer matrices is highly depend on the geometry of the tract, particularly on the density of the reference sections and its results in this thesis do not completely agree with the results in the literature. Finite element method is more accurate and its results agree well with results reported in the literature, but the opposite of the transfer matrices method is significantly time consuming. Method of the transfer matrices is more suitable for a large number of calculations or tuning certain parameters. Models created in this bachelor's thesis can serve for the analyse of pathology of voice production, eventually for prediction of surgical procedures in the area of the vocal tract.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.