National Repository of Grey Literature 9 records found  Search took 0.01 seconds. 
The use of novel technologies in the identification of unique molecular markers for minimal residual disease assessment in acute leukemia patients
Jančušková, Tereza ; Peková, Soňa (advisor) ; Jarošová, Marie (referee) ; Lysák, Daniel (referee)
Acute leukemias (AL) comprise a heterogeneous group of hematologic malignancies, and individual patient responses to treatment can be difficult to predict. Monitoring of minimal residual disease (MRD) is thus very important and holds great potential for improving treatment strategies. Common MRD targets include immunoglobulin heavy chain or T-cell receptor gene rearrangements, recurrent cytogenetic abnormalities and mutations in important hematological genes. Whereas in the majority of adult acute lymphoblastic leukemia patients a suitable MRD target can be identified, in adult acute myeloid leukemia patients well-characterized targets are found in only half of cases. The identification of new specific molecular markers of leukemic blasts for MRD assessment, particularly in AML patients, is therefore highly desirable. Our aim was to develop a flexible strategy for mapping of cytogenetically identified unique clone-specific abnormalities down to the single nucleotide level and, based on the sequence, design a specific real-time PCR assay for MRD assessment in AL patients without any previously described MRD marker. Using a combination of cytogenetic (chromosome banding, chromosome microdissection), molecular cytogenetic (mFISH, mBAND) and molecular biological (next- generation sequencing, long-range...
The use of novel technologies in the identification of unique molecular markers for minimal residual disease assessment in acute leukemia patients
Jančušková, Tereza ; Peková, Soňa (advisor) ; Jarošová, Marie (referee) ; Lysák, Daniel (referee)
Acute leukemias (AL) comprise a heterogeneous group of hematologic malignancies, and individual patient responses to treatment can be difficult to predict. Monitoring of minimal residual disease (MRD) is thus very important and holds great potential for improving treatment strategies. Common MRD targets include immunoglobulin heavy chain or T-cell receptor gene rearrangements, recurrent cytogenetic abnormalities and mutations in important hematological genes. Whereas in the majority of adult acute lymphoblastic leukemia patients a suitable MRD target can be identified, in adult acute myeloid leukemia patients well-characterized targets are found in only half of cases. The identification of new specific molecular markers of leukemic blasts for MRD assessment, particularly in AML patients, is therefore highly desirable. Our aim was to develop a flexible strategy for mapping of cytogenetically identified unique clone-specific abnormalities down to the single nucleotide level and, based on the sequence, design a specific real-time PCR assay for MRD assessment in AL patients without any previously described MRD marker. Using a combination of cytogenetic (chromosome banding, chromosome microdissection), molecular cytogenetic (mFISH, mBAND) and molecular biological (next- generation sequencing, long-range...
Molecular mechanisms of fibroblastoid cell phenotype transitions:dedifferentiation of myofibroblasts and influencing of invasiveness and metastasis of sarcoma
Kosla, Jan ; Dvořák, Michal (advisor) ; Peková, Soňa (referee) ; Reiniš, Milan (referee)
Fibroblasts are the principal cellular component of the connective tissue. They are a heterogeneous group of cells which contribute to the structure of connective tissue and wound healing by their ability to produce extracellular matrix (ECM). Fibroblasts and cells derived from them are involved in many pathological processes such as formation of malignant tumors and fibrosis. Tumor progression which finally leads to metastasis is a serious biomedical problem. There is a growing body of the recent evidence showing an important role of the tumor stroma and its interaction with cancer cells in cancer progression. Tumor stroma comprises mainly of myofibroblasts and their products, namely ECM, soluble factors, and enzymes. Myofibroblasts contribute more or less to all steps of cancer progression. Furthermore myofibroblasts play a key role in fibrosis, another serious human disease which is not efficiently treatable and which is associated with cancer progression. These facts made us to search for molecular means capable of eliminating the myofibroblastic phenotype. We succeeded to entirely dedifferentiate primary myofibroblasts by concomitant inhibition of TGFβ signaling and perturbation of MAPK signaling in a chick model that we have introduced. Malignant fibroblasts form sarcomas. ECM is the first...
Molecular evaluation of novel BCR/ABL kinase domain variants in patients with chronic myeloid leukemia
Dvořáková, Lucie ; Peková, Soňa (advisor) ; Kozák, Tomáš (referee)
1 Abstract BCR/ABL is a constitutively active tyrosine kinase that has been shown to be at the heart of the development of chronic myeloid leukemia (CML) and about 30% of acute lymphoblastic leukemia (ALL). With the recent advent of tyrosine kinase inhibitors (TKIs), exemplified by Imatinib, Nilotinib, Dasatinib and Bosutinib, patients with Ph+ CML or ALL are candidates for the therapy with these agents. From the available TKIs, Imatinib is considered as front-line therapy for CML patients in chronic phase, while for Ph+ ALL patients, 2nd generation TKIs (nilotinib, dasatinib, bosutinib) might be considered as more effective therapeutic option. Since the treatment with TKIs is a long-term affair, a substantial proportion of patients acquire some sort of mutation in kinase domain of BCR- ABL, which could be a reason of treatment failure. To date, over ninety BCR/ABL kinase domain mutations have been identified, affecting over 50 amino acids. Recurrent BCR/ABL kinase domain mutations have already been in vitro tested to approximate for their in vivo behavior. Our goal is to invent in vitro technique that would allow testing TKI sensitivity of novel BCR/ABL kinase domain mutations, identified at very low MRD levels. The technique makes use of site-directed mutagenesis to create the novel BCR/ABL kinase domain...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.