National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Wood impregnation
Pařil, Petr
Wood impregnation is one of the oldest and the most frequently used techniques to protect the wood. This treatment offers a wide range of protection depending on used impregnants (preservatives). Impregnation can make the wood more resistant to decay, less flammable, more dimensionally stable, harder, stronger, more UV stable resistant and many more. Generally, the aims of this thesis is to give a new and modern approaches to already known technologies. The experimental part have been carried out using laboratory vacuum-pressure impregnation plant and many other devices. Almost all treatments and measurement have been done in laboratories of Research centre in Útěchov. The different wood species e.g. European beech (Fagus sylvatica L.) and hybrid poplar (Populus hybrids) have been studied. The patented solution shows the method of the treatment and colouring of wood containing tannins, characterized by impregnation with a product containing iron oxide nanoparticles, in a concentration of 0.4 g/l to 42 g/l, an average particle size in the range of 1 to 100 nm, and a liquid medium. Impregnation can be performed as pressure impregnation, followed by soaking, or the product can be applied by brushing or spraying. This method is an alternative to wood ammonification. The tests (Paper I) shows following results. Both nanoiron and ammonia treatments tested induced darker colouring of oak wood, more intensive darkening was observed in case of the nano-iron treatment. The native oak showed a steep drop in lightness ca 25-50 hours of exposure followed by gradual re-increase during further exposure to the artificial sunlight. The darker surfaces generated by tannin reacting chemically with iron and ammonia evidently faded in the course of light exposure. In case of chromatic parameters a* and b*, the AT (ammonia treatment) oak more or less copied the colour change progress of native oak. On the contrary, the NIT (nanoiron treatment) wood showed a double increase in both parameters. The colour of NIT wood after light exposure was more or less equivalent to the original colour of the ammonium-treated. Distinct reddening of NIT oak may be caused by oxidation of non-precipitated iron particles. The antifungal effects of copper and silver nanoparticles against two wood-rotting fungi were investigated with following results (Paper II). The highest value of retention was observed for pine sapwood (~ 2 kg/m3) for both nanoparticle solutions. The amount of nanoparticles in the wood did not increase proportionally with an increasing concentration, but only 1.5-2 times increase was reached. An average leaching of 15% to 35% was observed for copper nanoparticles, depending on used wood species and concentration. Significantly lower leaching (max. 15 %) was observed for pine sapwood impregnated by silver nanoparticles with a concentration of 3 g/l. The highest antifungal effect (under 5 % of mass loss) against both tested fungi was found for nano-copper treatment at the concentration of 3 g/l. However, this effect of treatment seems to be almost negligible after the leaching test. Therefore, this study aims to present fundamental material properties of wood treated with copper and silver nanoparticles, and provide groundwork for further research (e.g. fixation of substances in the wood structure, etc.). In this study (Paper III), selected physical and mechanical properties, i.e., density profile, bending strength, hardness and moisture absorption were investigated for Lignamon (i), which was obtained from the Czech industrial production. Selected properties were also investigated using steam-densified beech (ii) and native beech (iii) and compared with each other. Densitometry of Lignamon showed a large variability of the density profile compared to the density profile of only densified beech. It is affected by the degree of densification, temperature and moisture gradients, and their relationship to the glass transition of the wood cell wall. Modulus of elasticity, hardness, moisture exclusion and anti-swelling efficiency of Lignamon are enhanced compared to densified beech. The enhanced dimension stability and lower hygroscopicity of Lignamon are probably caused by heat treatment during the process. Further investigation will be carried out with self-produced Lignamon samples. The paper IV deals with the effect of vacuum-pressure impregnation of poplar wood (Populus alba L.) by aqueous solutions of sucrose and sodium chloride on its physical properties. The most satisfying final properties were achieved in impregnation of sucrose with concentration of 6.25 g/100 ml H2O. The retention was 31 kg/m3 (WPG around 8 %). The values of ASE (anti-swelling efficiency) reached to 36 % and MEE (moisture exclusion efficiency) was reduced by 33 %. In Paper V, MW and conventional acetylation of wood was carried out to determine its efficacy on the material properties. Both MW and conventional heating positively affected the selected material properties. The results showed that no significant differences were found between MW and conventional heating; therefore, MW heating can be used as a valid replacement in the acetylation process. MW power of 2 kW and 0.1 m/min conveyor speed were the optimum conditions for MW acetylation. These process parameters resulted in 39.4 % ASE (T) and 35.2 % ASE (R) for beech and 38.0 % ASE (T) and 16.3 % ASE (R) for poplar samples. This work provides insight into the details of wood acetylation using MW heating. The study (Paper VI) aims to evaluate the antifungal activity of extractive compounds obtained with fexIKA accelerate extraction process. Results showed that the extractive compounds obtained from black locust heartwood were able to increase the native durability of European beech from class 5 (i.e. not durable with an average mass loss of 43.6 %) to class 3 (i.e. moderately durable with an average mass loss of 12.7 %). The final Paper VII shows following results. After impregnation with residual liquids and leaching, high amounts of TT (thermal treatment) and HTC (hydrothermal carbonisation) solution were washed out, whereas Pyrolysis liquids stayed with 25 % to 40 % remaining in the wood. Volumetric swelling in 65 % relative humidity at 20 °C was reduced from 6.5 % in untreated poplar to 5 % in impregnated samples with process residues of thermal treatment using 180 °C or 200 °C. The processes using HTC liquids from Miscanthus sp. (Misc.) or Sawdust showed reduction to 3-3.5 % and Pyrolysis liquid treatment to 2.5 %. After exposure to fungi, the mass loss of untreated Beech (30-35 %) and Poplar (40-50 %) was reduced to 2 % in case of Pyrolysis- and 4 % in case of TT-treatment.
Ecological interactions and niche differentiation of coexisting freshwater amphipods
Bystřický, Pavel Karel ; Petrusek, Adam (advisor) ; Pařil, Petr (referee)
Freshwater amphipods are ecologically important crustacean group. They act mainly as shredders of detritus in fast-running and cold waters, contributing to the nutrient cycles. Ecological interactions within this group are interesting especially in connection with a considerable degree of cryptic diversity, as well as due to contacts of invasive and native species. This thesis deals with so far studied interactions between syntopic species or lineages, especially those that may affect coexistence or competitive exclusion, such as: different levels of selective predation, ecologically significant differences in morphology or behavior, varying degrees of aggressiveness or intraguild predation, and differences in habitat preferences or resource use ability. Due to the large number of newly discovered cryptic lineages, only little effort has been invested to studies of their ecological interactions. For the time being, research has been limited to sexual interactions (potential reproductive interference or hybridization), differences in habitat preferences, or infestation rates by parasites. It is worth mentioning that only a few lineages have been explored in this way, and the lessons learned from these few works cannot yet be generalized. In my work, I focus on cryptic species complexes in which at...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.