National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Study of possibilities of increasing the biocompatibility of organic semiconductor surfaces
Malečková, Romana ; Šafaříková, Eva (referee) ; Vala, Martin (advisor)
This bachelor thesis deals with the possibility of biocompatibilization of organic semiconducting polymer PEDOT:PSS using RGD peptide for the construction of biosensors. Samples were prepared and compared where the RGD peptide was bound directly, as well as samples with a peptide bound via crosslinker molecule sulfo-SANPAH. Whether the RGD peptide was bound to the substrate was determined by the method of measuring the contact angle of liquids with subsequent calculation of surface energy. The results were further verified by elemental analysis, infrared spectrometry and Raman spectroscopy.
New organic semiconductors for bioelectronics
Malečková, Romana ; Salyk, Ota (referee) ; Vala, Martin (advisor)
This thesis focuses on the characterization of PEDOT:DBSA, a new semiconducting polymer for use in bioelectronic devices. It also deals with possibilities of surface treatment in order to enhance its biocompatibility and stability in aqueous environments. For this purpose, the organic polymer films were crosslinked with two crosslinking agents – GOPS and DVS. The ability of these agents to prevent leaching of some fractions of the polymer films in an aqueous environment and the ability to bind polymer molecules to each other as well as to the glass substrate was studied using the delamination test. Subsequently, the effects of these crosslinking agents on the film properties essential for the proper functions of bioelectronics made of these materials, was studied by contact angle measurements and four-point probes respectively. Moreover, several OECTs were prepared using original and crosslinked material as an active layer and were characterized by measuring transconductance and volumetric capacitance. PEDOT:DBSA has been shown to be a suitable material for use in bioelectronics, but its thin layers need to be stabilized in an aqueous environment. The agent DVS appears to be unsuitable for this purpose, mainly due to its insufficient film stabilization and its increased hydrophilicity of the film surface, thus increased tendency to interact with water, resulting in degradation of these thin layers. In contrast, GOPS, despite some reduction in film conductivity, has been able to stabilize the polymer layer over the long term, and thus appears to be a suitable way to stabilize PEDOT:DBSA.
New organic semiconductors for bioelectronics
Malečková, Romana ; Salyk, Ota (referee) ; Vala, Martin (advisor)
This thesis focuses on the characterization of PEDOT:DBSA, a new semiconducting polymer for use in bioelectronic devices. It also deals with possibilities of surface treatment in order to enhance its biocompatibility and stability in aqueous environments. For this purpose, the organic polymer films were crosslinked with two crosslinking agents – GOPS and DVS. The ability of these agents to prevent leaching of some fractions of the polymer films in an aqueous environment and the ability to bind polymer molecules to each other as well as to the glass substrate was studied using the delamination test. Subsequently, the effects of these crosslinking agents on the film properties essential for the proper functions of bioelectronics made of these materials, was studied by contact angle measurements and four-point probes respectively. Moreover, several OECTs were prepared using original and crosslinked material as an active layer and were characterized by measuring transconductance and volumetric capacitance. PEDOT:DBSA has been shown to be a suitable material for use in bioelectronics, but its thin layers need to be stabilized in an aqueous environment. The agent DVS appears to be unsuitable for this purpose, mainly due to its insufficient film stabilization and its increased hydrophilicity of the film surface, thus increased tendency to interact with water, resulting in degradation of these thin layers. In contrast, GOPS, despite some reduction in film conductivity, has been able to stabilize the polymer layer over the long term, and thus appears to be a suitable way to stabilize PEDOT:DBSA.
Study of possibilities of increasing the biocompatibility of organic semiconductor surfaces
Malečková, Romana ; Šafaříková, Eva (referee) ; Vala, Martin (advisor)
This bachelor thesis deals with the possibility of biocompatibilization of organic semiconducting polymer PEDOT:PSS using RGD peptide for the construction of biosensors. Samples were prepared and compared where the RGD peptide was bound directly, as well as samples with a peptide bound via crosslinker molecule sulfo-SANPAH. Whether the RGD peptide was bound to the substrate was determined by the method of measuring the contact angle of liquids with subsequent calculation of surface energy. The results were further verified by elemental analysis, infrared spectrometry and Raman spectroscopy.
The incidence, prevalence, letality and fatality from cancers in the Czech Republic
Křížová, Jana ; Mazouch, Petr (advisor) ; Malečková, Romana (referee)
In the past few decades, the Czech Republic took place significant changes in mortality rates. The objective of this study is to determine the development of cancer in the Czech Republic over the last forty years. Indicators of morbidity and mortality are being used. Emphasis is placed on the current development of all cancers in this country and further detail on those cancers that affect most of our population. In the very end, based on the results of the mortality tables, are analyzed the changes in life expectancy depending on the elimination of the deaths of some cancers. This model can use as an idea of how many years would, on average, our population lingered longer, if the cancer did not cause of death.

See also: similar author names
1 Malečková, Radka
Interested in being notified about new results for this query?
Subscribe to the RSS feed.