National Repository of Grey Literature 22 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Study of Post-Discharge Processes
Soural, Ivo ; Hrachová, Věra (referee) ; Brablec, Antonín (referee) ; Krčma, František (advisor)
The decaying plasma was studied by the optical emission spectroscopy. DC discharge created at 45 – 200 mA in Pyrex and Quartz tubes in flowing regime was used. The emission of three nitrogen spectral systems (1st and 2nd positive and 1st negative) were studied in time evolution for pressures of 500 – 5 000 Pa at two wall temperatures – ambient and liquid nitrogen (150 K inside the decaying plasma). Results showed that all three nitrogen systems (respectively N2(B, v), N2(C, v) and N2+(B, v) states as their origins) had their population maxima called pink-afterglow in the afterglow part. These maxima decreased with the increase of pressure for all systems, and moved to the later decay time. Maxima increased with discharge current (respectively power) and moved to shorter time. Populations at temperature of 150 K were measured due to the experimental arrangement from 17 ms, only, and thus pink aftergow maximum wasn’t observed (only at 5 000 Pa some maximum was recognized). Populations were smaller at 150 K that populations measured at laboratory temperature at the middle decay time (50-100 ms). At the late time, the populations were higher at lower temperature at lower pressure. Higher shifts (in intensity and decaytime) of pink afterglow maxima were observed in Quartz tube in comparison with their values in Pyrex tube. Besides the populations, rotational temperatures of selected bands of three observed spetral systems (for 1st negative 0-0 band, 1st positive 2-0 band and for 2nd positive 0-2 band) were measured. Rotational temperatures were monitored from presumption that this kind of temperature is equal to temperature of neutral gas (at local thermodynamic equilibrium). Results from 1st negative and 1st positive system showed strong decreasing of rotational temperatures up to about 10 ms at post-discharge begin, then temperatures were constant up to 20 ms of decay time and after that they grew up. Temperatures increased with the increase of current. The part with decreased temperature correlated with pink-afterglow part of post-discharge. Unfortunately, rotational temperatures of 2nd positive system had bad reproducibility and the time profile shape was opposite. Experimental results were compared with numerical kinetic model created by group of prof. Vasco Guerra at Instituto Supetior Técnico in Portugal. Several sets of conditions for simulation at 500 and 1 000 K in active discharge were applicable for the calculation corresponding to the experiment. Comparison of numerical simulation and experimental data done for N2(B) state demonstrated that maxima populations in pink afterglow are depended on the temperature difference between active discharge and post discharge. Maxima populations were supposed in pink afterglow disappeared if the same temperatures in active and post discharges were supposed. Temperature in active discharge is higher at higher apllied power, as it was showed from rotational temperatures observation. The results clearly showed that real temperature profile must be included into the kinetic model.
2D & 3D computer modelling of low-temperature plasma sheaths with a particular focus on their mutual interaction
Hromádka, Jakub ; Hrachová, Věra (advisor)
The presented thesis deals with the study of the sheath layer which is formed during the interaction of a low-temperature plasma with a solid object using computer modelling techniques. The theoretical part of the thesis summarizes knowledge about the physics of the sheath layer of electropositive and electronegative plasma and presents the theory of measuring plasma parameters using a Langmuir probe, including a discussion of the effect of collisions of charged particles with neutrals on the probe measurements. Further, theoretical descriptions of the plasma are presented which are the basis of the computer models created in the framework of the thesis: a particle model based on the Particle-in-Cell method and a fluid model of the drift-diffusion approximation of the plasma. The developed particle model works in 3D space, uses the null-collision Monte Carlo method to account for the effects of collisions of charged particles with neutrals and implements the Intel Math Kernel Library functions to solve the Poisson's equation. The fluid model is implemented using FeniCS software. At first, the developed models are used for the calculation of the sheath layer and the current-voltage characteristics of free-standing Langmuir probes of several types: a 1D model of an infinitely large planar probe, a 2D model of...
2D & 3D computer modelling of low-temperature plasma sheaths with a particular focus on their mutual interaction
Hromádka, Jakub ; Hrachová, Věra (advisor) ; Novotný, Dušan (referee) ; Kudrna, Pavel (referee)
The presented thesis deals with the study of the sheath layer which is formed during the interaction of a low-temperature plasma with a solid object using computer modelling techniques. The theoretical part of the thesis summarizes knowledge about the physics of the sheath layer of electropositive and electronegative plasma and presents the theory of measuring plasma parameters using a Langmuir probe, including a discussion of the effect of collisions of charged particles with neutrals on the probe measurements. Further, theoretical descriptions of the plasma are presented which are the basis of the computer models created in the framework of the thesis: a particle model based on the Particle-in-Cell method and a fluid model of the drift-diffusion approximation of the plasma. The developed particle model works in 3D space, uses the null-collision Monte Carlo method to account for the effects of collisions of charged particles with neutrals and implements the Intel Math Kernel Library functions to solve the Poisson's equation. The fluid model is implemented using FeniCS software. At first, the developed models are used for the calculation of the sheath layer and the current-voltage characteristics of free-standing Langmuir probes of several types: a 1D model of an infinitely large planar probe, a 2D model of...
Study of Positive Column in Glow Discharge under Medium Pressures Using Computational Experiment
Laca, Marek ; Hrachová, Věra (advisor) ; Novák, Stanislav (referee) ; Roučka, Štěpán (referee)
The positive column of the oxygen and argon-oxygen direct current glow discharge was investigated using a fluid plasma model at pressures around hundreds of pascals and discharge currents from ten to forty miliampers. The model describes the infinitely long positive column in cylindrical discharge tube. It is based on the continuity equation for particle concentration with the collisional right hand side. The model utilises the drift-diffusion approximation of particle flux and the mean-electron-energy approximation for the description of the electron interaction. The radial profile of particle concentration and interaction with the glass wall of the discharge tube is taken into account. The model predicts the electric field and the particle concentration in the positive column. The simulation results were compared with the measured intensity of electric field strength in the oxygen and argon-oxygen mixture. The impact of discharge conditions, like the pressure and gas composition, on the properties of the positive column was investigated. The model confirmed that the strength of longitudinal electric field at medium pressures is about 40 V/cm in oxygen, molecular gas, and it is about 3 V/cm in argon, noble gas.
Influence of the laser mixture composition on the existence of the dinitrogen bands
Morávek, Matěj Jan ; Hrachová, Věra (advisor) ; Kudrna, Pavel (referee)
This project studies mixtures of helium, nitrogen and carbon dioxid, widely used in so called CO2 lasers. These lasers are classified as discharge lasers. In the case of low output lasers is often used a DC glow discharge. We can find bands so called first and second positive systems of a dinitrogen molecule in an emission spectrum of the glow discharge. It is possible to deduce energetic balance and a vibrational temperature from these bands. The vibrational temperature was studied by the vibrational spectroscopy of dinitrogen molecule for various discharge currents and pressures and for various distribution of nitrogen in the mixture (we will start with an industrial mixture LASAL 63).
Study of plasma in the mixtures with molecular gas at wide pressure range
Morávek, Matěj Jan ; Hrachová, Věra (advisor) ; Mazánková, Věra (referee) ; Pavlík, Jaroslav (referee)
Study of plasma in the mixtures with molecular gas at wide pressure range Matěj Jan Morávek Abstract: The positive column of DC glow discharge sustained in oxygen and oxygen-nitrogen mixtures has been studied in two discharge tubes of the same shape made from different materials (Silica and Pyrex glass) for total pressures 650 - 2000 Pa and discharge currents up to 40 mA. Various parameters of the discharge - axial electric field strength, concentration of electrons and emission spectra - were studied with emphasis placed on transition region between low- and high-gradient form of the positive column. We have focused on the qualitative and quantitative analysis of the differences in emission spectra for both particular forms and the transitional region between them. The impact of 1 % admixture of nitrogen was also studied.

National Repository of Grey Literature : 22 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.