National Repository of Grey Literature 53 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Application of methods of computational physics for the study of plasma-solid interaction
Hromádka, Jakub ; Hrach, Rudolf (advisor) ; Novák, Stanislav (referee)
Low-temperature plasma and its interaction with immersed solids is studied in this work. The research of the physical processes on this interface is performed by two-dimensional particle computer model. The model uses molecular dynamic method. Mutual forces between particles are computed by Particle- in-Cell method. The main application of the model is in the area of the probe diagnostic of plasma. Simple problems are compared with theory and two dimensional effects are discused. Contribution of particle modeling to plasma research is showed on the problem of interaction of sheaths around cylidrical probes. We deal with question whether we are able to get some information about unevennesses at the surface of solid immersed in plasma by measuring probe characteristics in its surroundings. We also studied the influence of plasma electronegativity on the parameters of sheaths around cylidrical probes. Powered by TCPDF (www.tcpdf.org)
Computer study of probe diagnostics in high-temperature plasma
Lachnitt, Jan ; Hrach, Rudolf (advisor) ; Kudrna, Pavel (referee)
Title: Computational study of probe diagnostics in high-temperature plasma Author: Jan Lachnitt Department: Department of Surface and Plasma Science Supervisor: prof. RNDr. Rudolf Hrach, DrSc., Department of Surface and Plasma Science Abstract: This work is concerned to the particle computer modelling of the interaction of plasma, especially edge plasma, with immersed solids, especially probes. First, the speed and accuracy of several algorithms of the electrostatic force calculation were compared. One of the algorithms has been newly proposed. Then, a two-dimensional model of the interaction of collision-less plasma with a probe was created. This model has been applied to experimental data from CASTOR tokamak. The crucial point of this work is the creation of a fully three-dimensional particle model. This model has been tested for accuracy and speed and has been parallelized for higher efficiency. Keywords: plasma, probe diagnostics, computational physics, particle modelling
Computational study of initial stages of metal film growth
Soukup, Jindřich ; Hrach, Rudolf (advisor) ; Novotný, Dušan (referee)
This work deals with the description and analysis of image data, which related to the initial stages of the thin film growth. The introductory retrieval section includes a description of thin films and methods of their deposition. The following part is an overview of the growth models of thin layers. The heart of my thesis is the analysis and modification of morphological methods and interpretation of their results. The emphasis is placed on the statistical aspect of methods and their optimal implementation due to the accuracy of the results. The work shows how to modify the radial distribution function and methods based on so-called Voronoi and Delaunay triangulation tessellation so that they can better affect the character of test data. New methods are tested both on the experimental and model data. Then we examine their robustness, sensitivity and their mutual independence. At the conclusion it is introduced and analyzed a new model of thin film growth.

National Repository of Grey Literature : 53 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.