National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Model catalysts based on cerium oxide
Aulická, Marie ; Veltruská, Kateřina (advisor) ; Nemšák, Slavomír (referee) ; Švec, Martin (referee)
This work deals with the preparation of thin cerium oxide films on the Cu(110) single crystal. Physico-chemical properties of this system were studied by surface science techniques (XPS, UPS, ARUPS, LEED, LEEM and STM). The first part of the work concerns interaction of Cu(110) single crystal with oxygen. Condi- tions for formation of O(2x1) and Oc(6x2) oxygen reconstructions were found. Various methods of preparation of CeOx films were discussed. A novel method for continuous control of ceria stoichiometry from CeO2 to Ce2O3 through variation of oxygen vacancy concentration has been developed. Ceria facilitated oxygen spill-over was observed on copper substrate. It was found that a restructuring of copper substrate occurs at the copper-ceria interface with subsequent formation of Cu(13 13 1) facets, which support a Carpet-like ceria overlayer. Interaction of this system with platinum was studied. Finally, high temperature growth of CeOx films was studied and creation of ceria islands exposing the (110) plane was observed. 1
Physically chemical properties of epitaxial films CeO2/Cu(110)
Aulická, Marie ; Veltruská, Kateřina (advisor) ; Nehasil, Václav (referee)
In this work ways of preparation of thin epitaxial cerium oxide film on Cu(110) surface were studied. X-ray photoelectron spectroscopy (XPS), X-ray photoelectron difraction (XPD), low energy electron difraction (LEED), ion scattering spectroscopy (ISS) and scanning tunneling microscopy (STM) were used for the characterization of prepared systems. The island structure of CeO2 was prepared by the method of reactive evaporation in oxygen atmosphere. The influence of temperature on the electronic structure and morphology was studied. At the temperature above 550 ˚C partial reduction to Ce2O3 and reordering of the islands to the CeO2(331) structure was observed. The ceria promoted oxidation of copper surface was approved, since the clean c(6x2) reconstruction of the surface was observed at the oxygen exposure 1,5 order of magnitude lower then on Cu(110) alone. The other model system was prepared by cerium evaporation to the oxygen precovered Cu(110) surface. The mix of (2x1) and c(6x2) surface reconstruction was formed by oxygen exposition at 300 ˚C. Cerium was deposited on this surface, also at 300 ˚C. During the following heating to 500 ˚C the formation of epitaxial film Ce2O3(0001) was observed, accompanied by the formation of large hundreds nm long smooth band structures in the [11̄0] direction.
Model catalysts based on cerium oxide
Aulická, Marie ; Veltruská, Kateřina (advisor)
This work deals with the preparation of thin cerium oxide films on the Cu(110) single crystal. Physico-chemical properties of this system were studied by surface science techniques (XPS, UPS, ARUPS, LEED, LEEM and STM). The first part of the work concerns interaction of Cu(110) single crystal with oxygen. Condi- tions for formation of O(2x1) and Oc(6x2) oxygen reconstructions were found. Various methods of preparation of CeOx films were discussed. A novel method for continuous control of ceria stoichiometry from CeO2 to Ce2O3 through variation of oxygen vacancy concentration has been developed. Ceria facilitated oxygen spill-over was observed on copper substrate. It was found that a restructuring of copper substrate occurs at the copper-ceria interface with subsequent formation of Cu(13 13 1) facets, which support a Carpet-like ceria overlayer. Interaction of this system with platinum was studied. Finally, high temperature growth of CeOx films was studied and creation of ceria islands exposing the (110) plane was observed. 1
Model catalysts based on cerium oxide
Aulická, Marie ; Veltruská, Kateřina (advisor) ; Nemšák, Slavomír (referee) ; Švec, Martin (referee)
This work deals with the preparation of thin cerium oxide films on the Cu(110) single crystal. Physico-chemical properties of this system were studied by surface science techniques (XPS, UPS, ARUPS, LEED, LEEM and STM). The first part of the work concerns interaction of Cu(110) single crystal with oxygen. Condi- tions for formation of O(2x1) and Oc(6x2) oxygen reconstructions were found. Various methods of preparation of CeOx films were discussed. A novel method for continuous control of ceria stoichiometry from CeO2 to Ce2O3 through variation of oxygen vacancy concentration has been developed. Ceria facilitated oxygen spill-over was observed on copper substrate. It was found that a restructuring of copper substrate occurs at the copper-ceria interface with subsequent formation of Cu(13 13 1) facets, which support a Carpet-like ceria overlayer. Interaction of this system with platinum was studied. Finally, high temperature growth of CeOx films was studied and creation of ceria islands exposing the (110) plane was observed. 1
Model catalysts based on cerium oxide
Aulická, Marie ; Veltruská, Kateřina (advisor)
This work deals with the preparation of thin cerium oxide films on the Cu(110) single crystal. Physico-chemical properties of this system were studied by surface science techniques (XPS, UPS, ARUPS, LEED, LEEM and STM). The first part of the work concerns interaction of Cu(110) single crystal with oxygen. Condi- tions for formation of O(2x1) and Oc(6x2) oxygen reconstructions were found. Various methods of preparation of CeOx films were discussed. A novel method for continuous control of ceria stoichiometry from CeO2 to Ce2O3 through variation of oxygen vacancy concentration has been developed. Ceria facilitated oxygen spill-over was observed on copper substrate. It was found that a restructuring of copper substrate occurs at the copper-ceria interface with subsequent formation of Cu(13 13 1) facets, which support a Carpet-like ceria overlayer. Interaction of this system with platinum was studied. Finally, high temperature growth of CeOx films was studied and creation of ceria islands exposing the (110) plane was observed. 1
Physically chemical properties of epitaxial films CeO2/Cu(110)
Aulická, Marie ; Veltruská, Kateřina (advisor) ; Nehasil, Václav (referee)
In this work ways of preparation of thin epitaxial cerium oxide film on Cu(110) surface were studied. X-ray photoelectron spectroscopy (XPS), X-ray photoelectron difraction (XPD), low energy electron difraction (LEED), ion scattering spectroscopy (ISS) and scanning tunneling microscopy (STM) were used for the characterization of prepared systems. The island structure of CeO2 was prepared by the method of reactive evaporation in oxygen atmosphere. The influence of temperature on the electronic structure and morphology was studied. At the temperature above 550 ˚C partial reduction to Ce2O3 and reordering of the islands to the CeO2(331) structure was observed. The ceria promoted oxidation of copper surface was approved, since the clean c(6x2) reconstruction of the surface was observed at the oxygen exposure 1,5 order of magnitude lower then on Cu(110) alone. The other model system was prepared by cerium evaporation to the oxygen precovered Cu(110) surface. The mix of (2x1) and c(6x2) surface reconstruction was formed by oxygen exposition at 300 ˚C. Cerium was deposited on this surface, also at 300 ˚C. During the following heating to 500 ˚C the formation of epitaxial film Ce2O3(0001) was observed, accompanied by the formation of large hundreds nm long smooth band structures in the [11̄0] direction.

See also: similar author names
2 Aulická, Martina
1 Aulická, Michala
Interested in being notified about new results for this query?
Subscribe to the RSS feed.