National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
New molecular mechanisms involved in cell cycle control
Aquino, Cecilia ; Macůrek, Libor (advisor) ; Anger, Martin (referee) ; Braun, Marcus (referee)
Cecilia Aquino Perez, M. Sc. Doctoral thesis abstract In this doctoral, thesis we aimed to find and study novel mechanisms regulating cell cycle phase transitions in non-stressed conditions and in context of the cell response to various types of stress. First, we focused on studying Polo-like kinase 3 that has previously been implicated in activation of the cell cycle checkpoint after DNA damage. For this, we employed CRISPR/Cas9- mediated gene editing to knock-out PLK3 in RPE cells while in parallel performing RNA interference assays and submitting the cells to different types of stress. The main observation was that in both systems PLK3 was disposable for response to DNA damage, hypoxia and osmotic stress. Through mass spectrometry analysis of purified EGFP-PLK3 we identified PP6 and its regulatory subunits PPP6R1 and PPP6R3 as novel PLK3 interactors. We observed that PLK3 is phosphorylated in its conserved residue Thr-219 and that PP6 depletion boosted PLK3 phosphorylation status but did not affect its kinase activity. The possible regulation of PLK3 trough PP6 is interesting and its biological relevance will be addressed by future research. Next, we performed a transcriptomic analysis in human RPE-FUCCI cells aiming to identify new regulators of the cell cycle. We selected Family with sequence...
Tripolar cell cleavage - morphokinetic evaluation of the human embryo development by the time-lapse system
Jandová, Oldřiška ; Hlinka, Daniel (advisor) ; Anger, Martin (referee)
The principle of time-lapse system is based on the continuous sensing of the development of the pre-implantation embryo and the assessment of its morphology. This is advantageous in assessing the quality and implantation potential of embryos, which are subsequently evaluated according to certain established criteria. This gives the opportunity to select the highest quality embryo to be implanted into the mother's womb during embryo transfer. This system also allows us to detect any abnormalities in embryo development. This is very important, because the occurrence of abnormalities in early embryonic cell division is quite common. Morphological evaluation of embryos indicates a high incidence of tripolar mitosis during this early embryo development. The result of this division is three blastomers instead of two, which is associated with an irregular chromosome separation, each of them may contain a different number of chromosomes. In the case where conventional embryo observation is used to observe embryo morphology at longer intervals, it may be that the changes associated with tripolar mitosis are not detected at all, and such embryos appear to be falsely prosperous and are often selected for transfer. This can have serious consequences in the case of implantation, because these embryos are not...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.