National Repository of Grey Literature 7 records found  Search took 0.02 seconds. 
Analysis of stress state and failure in test specimens used for determination of fracture-mechanical parameters of quasi-brittle materials
Holušová, Táňa ; Seitl,, Stanislav (referee) ; Veselý, Václav (advisor)
The thesis is focused on a test on determination of the fracture-mechanical parameters of quasi-brittle materials, especially concrete. What is referred to as the wedge-splitting test is considered, for which a variety of shapes of notched specimen can be used. This work is exclusively focused on the cylinder-shaped specimen of diameter 150 mm and breadth of 100 mm. The test is performed virtually using Atena 2D FEM software. Progress of failure is observed during loading of the specimen for various notch lengths. The amount of energy released for the development the failure outside of the tested cross-sectional area (weakened by the notch) is quantified and the size of the fracture process zone is investigated. The described analysis is performed for several material sets witch differ in cohesive properties of the quasi-brittle material expressed via the so-called characteristic length. Suitable proportions of the test specimen are sought, in order to avoid the failure and thus also the energy dissipation outside of the specimen ligament area during the experimental tests, which shall lead to more accurate estimates of fracture-mechanical parameters of the tested material.
Fracture process zone and energy dissipation during fracture of quassi-brittle materials
Klon, Jiří ; Seitl, Stanislav (referee) ; Veselý, Václav (advisor)
The work is focused on the comparison of selected fracture properties of quasi-brittle materials, particularly concrete, determined from results from tests on specimens of different sizes and notch lengths. The first part deals with the study of selected plasticity (failure) criteria and their testing within the mathematical package (MathCAD) for their later intended implementation in a program for estimation of the size and shape of the fracture process zone. Next part is devoted to numerical simulations of three-point bending test of notched beams. These simulations were performed using the ATENA FEM software. Results of the simulations are evaluated using fracture models; this thesis presents values of fracture parameters quantifying the amount of energy dissipated in the fracture process zone.
Mechanical fracture parameters of concrete after exposure to high temperatures
Bejček, Michal ; Keršner, Zbyněk (referee) ; Šimonová, Hana (advisor)
The diploma thesis is focused on the evaluation of mechanical fracture parameters of concrete after exposure to high temperatures. In the introductory theoretical part general principles of fracture mechanics with the concentration on a linear elastic fracture mechanics and non-linear fracture models for the concrete are summarized. The meaning of the three-point bending fracture test used for determination of fracture parameters is also explained. Further the influence of high temperatures on the partial components of concrete and general modeling of temperature loading is described. The practical part is concerned with the evaluation of fire experiments on the concrete panels including numerical simulations using GiD and ATENA software. The evaluation of data obtained from the three-point bending test carried out on specimens with initial stress concentrator taken from concrete panels is a main part of the diploma thesis. The values of modulus of elasticity, effective fracture toughness, work of fracture and fracture energy are determined from the measured F–d and F–CMOD diagrams after their proper corrections in the GTDiPS application. The evaluation of the selected mechanical fracture parameters was performed by StiCrack software using effective crack model and work of fracture method and DKFM_BUT software using the double-K fracture model. Finally, the attention is paid to the analysis of the obtained data.
PILOT ANALYSIS OF CHEVRON NOTCH LIGAMENT AREA FOR APPLICATION\nON QUASI-BRITTLE MATERIALS
Seitl, Stanislav ; Růžička, P. ; Miarka, P. ; Sobek, J.
Specimens for the bending tests with the chevron notch are standardized for the\nevaluation of the fracture toughness of various materials. The main advantage of this test\nset-up is that no sharp pre-crack has to be introduced, because a sharp crack is formed\nduring loading at the beginning of the test. Furthermore, no crack length measurement is\nrequired, and a stable crack growth can be reached due to geometry of the notch. In this\ncontribution a difference of the ligament area of the specimens with the straight through\nnotch and the chevron notch was investigated
Mechanical fracture parameters of concrete after exposure to high temperatures
Bejček, Michal ; Keršner, Zbyněk (referee) ; Šimonová, Hana (advisor)
The diploma thesis is focused on the evaluation of mechanical fracture parameters of concrete after exposure to high temperatures. In the introductory theoretical part general principles of fracture mechanics with the concentration on a linear elastic fracture mechanics and non-linear fracture models for the concrete are summarized. The meaning of the three-point bending fracture test used for determination of fracture parameters is also explained. Further the influence of high temperatures on the partial components of concrete and general modeling of temperature loading is described. The practical part is concerned with the evaluation of fire experiments on the concrete panels including numerical simulations using GiD and ATENA software. The evaluation of data obtained from the three-point bending test carried out on specimens with initial stress concentrator taken from concrete panels is a main part of the diploma thesis. The values of modulus of elasticity, effective fracture toughness, work of fracture and fracture energy are determined from the measured F–d and F–CMOD diagrams after their proper corrections in the GTDiPS application. The evaluation of the selected mechanical fracture parameters was performed by StiCrack software using effective crack model and work of fracture method and DKFM_BUT software using the double-K fracture model. Finally, the attention is paid to the analysis of the obtained data.
Analysis of stress state and failure in test specimens used for determination of fracture-mechanical parameters of quasi-brittle materials
Holušová, Táňa ; Seitl,, Stanislav (referee) ; Veselý, Václav (advisor)
The thesis is focused on a test on determination of the fracture-mechanical parameters of quasi-brittle materials, especially concrete. What is referred to as the wedge-splitting test is considered, for which a variety of shapes of notched specimen can be used. This work is exclusively focused on the cylinder-shaped specimen of diameter 150 mm and breadth of 100 mm. The test is performed virtually using Atena 2D FEM software. Progress of failure is observed during loading of the specimen for various notch lengths. The amount of energy released for the development the failure outside of the tested cross-sectional area (weakened by the notch) is quantified and the size of the fracture process zone is investigated. The described analysis is performed for several material sets witch differ in cohesive properties of the quasi-brittle material expressed via the so-called characteristic length. Suitable proportions of the test specimen are sought, in order to avoid the failure and thus also the energy dissipation outside of the specimen ligament area during the experimental tests, which shall lead to more accurate estimates of fracture-mechanical parameters of the tested material.
Fracture process zone and energy dissipation during fracture of quassi-brittle materials
Klon, Jiří ; Seitl, Stanislav (referee) ; Veselý, Václav (advisor)
The work is focused on the comparison of selected fracture properties of quasi-brittle materials, particularly concrete, determined from results from tests on specimens of different sizes and notch lengths. The first part deals with the study of selected plasticity (failure) criteria and their testing within the mathematical package (MathCAD) for their later intended implementation in a program for estimation of the size and shape of the fracture process zone. Next part is devoted to numerical simulations of three-point bending test of notched beams. These simulations were performed using the ATENA FEM software. Results of the simulations are evaluated using fracture models; this thesis presents values of fracture parameters quantifying the amount of energy dissipated in the fracture process zone.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.