National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Modelling and Optimization of Complex Fiber Diffractive Structures
Helán, Radek ; Lazar,, Josef (referee) ; Tománek, Pavel (referee) ; Urban, František (advisor)
The thesis discusses the fiber Bragg gratings simulations, analysis and design. In the present time, there are several methods to simulate fiber gratings response based on the stated parameters that define their dimensions and material features. However, this work deals with a different issue, that is the synthesis of the input parameters for demanded spectral responses. The main aim of the work is to achieve a synthesis method that would help to discover parameters describing advanced grating structure, based on the required spectral reflectivity. The basic demand for the parameter synthesis is an achievement of the real values in terms of the consequent production of the suggested structure. The described synthesis method considers advanced fiber grating structure as a structure of several uniform grating sections. The input parameters are estimated in steps, using the well-known direct methods in order to obtain grating responses and feedback to establish the parameters changes. The principle methods involve establishment of initial input parameter values and necessary subsequent algorithm leading to optimize the required spectral response. The initial values are calculated by a simplified model based on the coupled theory equations that are handled for the periodic disturbances in cylindrical waveguide. The following optimization uses the multiple thin film stack and transfer matrix methods. The properties of grating structure spectral reflectivity are step by step calculated while using these direct methods. Input parameters are established in the next several steps. Establishment of input parameters is done subsequently, based on the demanded and calculated output spectral reflectivity properties. Optimizing process is limited by possibilities of the grating manufacture technology. It is possible to assemble arbitrary fiber grating structure taking in term the demanded spectral response. Nevertheless, the calculated input parameters are real for the following manufacture. This method could be used to design optical band stop filter, high-pass and low-pass filters or filters for special applications.
Design of optical fiber sensor for vibration detection
Janoušek, Adam ; Münster, Petr (referee) ; Dejdar, Petr (advisor)
The master theses deals with a detailed analysis of optical fiber sensors. Specifically, there are discussed optical fibers, various types of sensors and realization optical fiber senzor and senzor system that has been optimized and processed data in real time. In master theses also describes the LabView programming enviroment and uses components, including the entire sensor systém of a sensors system that sends measured data
Design of optical fiber sensor for vibration detection
Janoušek, Adam ; Münster, Petr (referee) ; Dejdar, Petr (advisor)
The master theses deals with a detailed analysis of optical fiber sensors. Specifically, there are discussed optical fibers, various types of sensors and realization optical fiber senzor and senzor system that has been optimized and processed data in real time. In master theses also describes the LabView programming enviroment and uses components, including the entire sensor systém of a sensors system that sends measured data
Modelling and Optimization of Complex Fiber Diffractive Structures
Helán, Radek ; Lazar,, Josef (referee) ; Tománek, Pavel (referee) ; Urban, František (advisor)
The thesis discusses the fiber Bragg gratings simulations, analysis and design. In the present time, there are several methods to simulate fiber gratings response based on the stated parameters that define their dimensions and material features. However, this work deals with a different issue, that is the synthesis of the input parameters for demanded spectral responses. The main aim of the work is to achieve a synthesis method that would help to discover parameters describing advanced grating structure, based on the required spectral reflectivity. The basic demand for the parameter synthesis is an achievement of the real values in terms of the consequent production of the suggested structure. The described synthesis method considers advanced fiber grating structure as a structure of several uniform grating sections. The input parameters are estimated in steps, using the well-known direct methods in order to obtain grating responses and feedback to establish the parameters changes. The principle methods involve establishment of initial input parameter values and necessary subsequent algorithm leading to optimize the required spectral response. The initial values are calculated by a simplified model based on the coupled theory equations that are handled for the periodic disturbances in cylindrical waveguide. The following optimization uses the multiple thin film stack and transfer matrix methods. The properties of grating structure spectral reflectivity are step by step calculated while using these direct methods. Input parameters are established in the next several steps. Establishment of input parameters is done subsequently, based on the demanded and calculated output spectral reflectivity properties. Optimizing process is limited by possibilities of the grating manufacture technology. It is possible to assemble arbitrary fiber grating structure taking in term the demanded spectral response. Nevertheless, the calculated input parameters are real for the following manufacture. This method could be used to design optical band stop filter, high-pass and low-pass filters or filters for special applications.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.