National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Modeling of bio-inorganic interfaces
Trachta, Michal ; Bludský, Ota (advisor) ; Nachtigall, Petr (referee)
Dynamic atomistic description of bio-inorganic interfaces represents a challenging problem for contemporary computational chemistry. A detailed analysis of processes occurring on the interface between biomolecule and inorganic material can help our understanding of various processes, ranging from chromatography and protein separation to protein immobilization techniques and their effect on enzyme activity or protein conformational stability. High complexity of bio- inorganic interfaces prevents detailed investigation using accurate, but computationally demanding ab initio methods. Since reliable empirical potentials are not available for these systems, the aim of this work is to develop force fields based on ab initio data as well as a general methodology for parameterization of such force fields. Our potential fitting procedure was carried out in an automated fashion based on molecular dynamics simulation. The resulting potentials were applied for investigation of inorganic material's influence on polypeptide conformations.
Modeling of bio-inorganic interfaces
Trachta, Michal ; Bludský, Ota (advisor) ; Nachtigall, Petr (referee)
Dynamic atomistic description of bio-inorganic interfaces represents a challenging problem for contemporary computational chemistry. A detailed analysis of processes occurring on the interface between biomolecule and inorganic material can help our understanding of various processes, ranging from chromatography and protein separation to protein immobilization techniques and their effect on enzyme activity or protein conformational stability. High complexity of bio- inorganic interfaces prevents detailed investigation using accurate, but computationally demanding ab initio methods. Since reliable empirical potentials are not available for these systems, the aim of this work is to develop force fields based on ab initio data as well as a general methodology for parameterization of such force fields. Our potential fitting procedure was carried out in an automated fashion based on molecular dynamics simulation. The resulting potentials were applied for investigation of inorganic material's influence on polypeptide conformations.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.