National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Stress-strain analysis of the axial turbine of turboprop engine
Kolárik, Matej ; Ing. Petr Navrátil, Ph.D (referee) ; Skalka, Petr (advisor)
This diploma thesis deals with a creation and subsequent analysis of the computational model of the turboprop engine's turbine designed by Prvá Brněnská Strojírna Velká Bíteš. The computational model is created and solved in the finite element model system ANSYS. A cyclic symmetry is taken into account during the solution. The static analysis of the turbine was carried out in objective to quatify prestress effects which are caused by a rotation, higher temperature and an excitation from stator blades. These prestress effects were used in the modal analysis of the turbine. Harmonic analysis were calculated to simulate an operation conditions and a resonance state. The results of these analysis indicate that the higher temperature has the biggest impact on the properties of the turbine. It is also shown, that during the operation of the engine the turbine runs in the mode which is not even close to the resonance state.
Stress-strain analysis of the axial turbine of turboprop engine
Kolárik, Matej ; Ing. Petr Navrátil, Ph.D (referee) ; Skalka, Petr (advisor)
This diploma thesis deals with a creation and subsequent analysis of the computational model of the turboprop engine's turbine designed by Prvá Brněnská Strojírna Velká Bíteš. The computational model is created and solved in the finite element model system ANSYS. A cyclic symmetry is taken into account during the solution. The static analysis of the turbine was carried out in objective to quatify prestress effects which are caused by a rotation, higher temperature and an excitation from stator blades. These prestress effects were used in the modal analysis of the turbine. Harmonic analysis were calculated to simulate an operation conditions and a resonance state. The results of these analysis indicate that the higher temperature has the biggest impact on the properties of the turbine. It is also shown, that during the operation of the engine the turbine runs in the mode which is not even close to the resonance state.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.