National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 
Graphene dopamine biosensor and gate effect
Krajíčková, Kateřina ; Šimšíková, Michaela (referee) ; Bartošík, Miroslav (advisor)
This bachelor’s thesis focuses on investigating the interaction between biochemical substances (dopamine solutions) and graphene, using field effect transistor (FET) based sensors. Graphene possesses unique properties, including biocompatibility, high charge carrier mobility, and surface sensitivity, making it an ideal material for biosensing devices. In these sensors, graphene is employed as the conductive sensing channel within fieldeffect transistors. By utilizing sensors with an FET arrangement, the doping of graphene induced by adsorbed atoms or molecules can be experimentally determined through the observation of the shift in the position of the Dirac point. The measurements can be performed using either the bottom-gated or electrolytic top-gated configuration of the FET sensor, and the thesis explores the differences between the two setups. Furthermore, it investigates the impact of the distance between the graphene and top-gate electrode on the sensor’s response. The results of these measurements are represented by transfer curves, which exhibit characteristic peaks indicating the charge neutrality point, known as the Dirac point, of graphene.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.