National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Experimental Investigation of Accelerator Driven Nuclear Reactors for Thorium Based Nuclear Power
Zeman, Miroslav ; ČR,, Milan Štefánik, UJF AV (referee) ; Katovský, Karel (advisor)
The Master Thesis deals with the use of thorium nuclear fuel in accelerator driven systems. Basic principle of ADS, present situation and future possibilities are described in this work. The main goal of the work is determination of neutron flux in spallation target QUINTA. In December 2013, an experiment was performed at Joint Institute for Nuclear Research, Dubna. Samples of cobalt, situated at different positions in QUINTA target, were irradiated in secondary neutron field generated by deuteron beam of energies 2 AGeV and 4 AGeV and beam of C-12 with energy 2 AGeV. The samples were measured with the use of germanium semiconductor detectors and analysed using gamma-ray spectrometry. Reaction rates of Co-59 products were determined. Neutron flux was determined in setup QUINTA on the base of experimental reaction rates. Experimental reaction rates were compared with calcula1tion of MCNPX code.
Investigation of Thorium Utilization in Accelerator Driven Nuclear Reactors
Král, Dušan ; ČR, Petr Chudoba, ÚJF AV (referee) ; Zeman, Miroslav (advisor)
This thesis deals with the idea of using accelerator driven systems for thorium transmutation into the fissile material, which can be utilized in the accelerator driven systems and in thermal nuclear reactors. Thorium occurs on Earth only in fertile isotope Th-232. It can be converted to fissile U-233 by neutron capture and subsequent beta decay. The experimental part handles the data measured by the irradiation of four thorium samples by the secondary neutrons in the QUINTA spallation target, which was irradiated with 660~MeV protons. Reaction rates for the fission and spallation products were estimated using gamma spectroscopy and activation techniques. Furthermore, Pa-233 production rates were also determined in all experimental samples. Pa-233 and fission production rates were calculated in all experimental samples using the MCNPX transport code and evaluated nuclear data for high-energy reactions. The experimental results are of a great importance for the future investigation of thorium in the accelerator driven system concept, validation of Monte-Carlo based calculation codes and validation of high-energy nuclear models.
Use of activation detectors for neutron field measurement in models of ADTS
Chudoba, Petr
Accelerator driven transmutation systems could be a solution to the problem with long-lived nuclear waste and opening the way to thorium fuel cycle. Due to intensive neutron source based on spallation reaction are these systems very litle dependent on the arrangement of the core and fuel quality. These systems can transmute the spent fuel, eventually 232Th or 238U without affecting maintenance of fission reaction. Additionally subcritical blanket ensures high safety. For these systems it is necessary to know the cross sections of reactions of fast neutrons produced in the spallation reaction with different materials. This data is necessary not only for the selection of appropriate construction materials, but also for creation of programs simulating accelerator driven transmutation systems. This thesis is focused on the experimental determination of cross sections of reactions 89Y(n,2n)88Y and 89Y(n,3n)87Y with neutron energies from 17,6 to 33,6 MeV. Yttrium is analyzed for its (n,xn) threshold reactions, which makes it appropriet activation detector for study of the neutron fields in model configurations of accelerator driven transmutation systems. The obtained cross sections are unique, in that so far there are no experimental data for used neutron energies. Powered by TCPDF (www.tcpdf.org)
Use of activation detectors for neutron field measurement in models of ADTS
Chudoba, Petr
Accelerator driven transmutation systems could be a solution to the problem with long-lived nuclear waste and opening the way to thorium fuel cycle. Due to intensive neutron source based on spallation reaction are these systems very litle dependent on the arrangement of the core and fuel quality. These systems can transmute the spent fuel, eventually 232Th or 238U without affecting maintenance of fission reaction. Additionally subcritical blanket ensures high safety. For these systems it is necessary to know the cross sections of reactions of fast neutrons produced in the spallation reaction with different materials. This data is necessary not only for the selection of appropriate construction materials, but also for creation of programs simulating accelerator driven transmutation systems. This thesis is focused on the experimental determination of cross sections of reactions 89Y(n,2n)88Y and 89Y(n,3n)87Y with neutron energies from 17,6 to 33,6 MeV. Yttrium is analyzed for its (n,xn) threshold reactions, which makes it appropriet activation detector for study of the neutron fields in model configurations of accelerator driven transmutation systems. The obtained cross sections are unique, in that so far there are no experimental data for used neutron energies. Powered by TCPDF (www.tcpdf.org)
Use of activation detectors for neutron field measurement in models of ADTS
Chudoba, Petr ; Wagner, Vladimír (advisor) ; Krtička, Milan (referee)
Accelerator driven transmutation systems could be a solution to the problem with long-lived nuclear waste and opening the way to thorium fuel cycle. Due to intensive neutron source based on spallation reaction are these systems very litle dependent on the arrangement of the core and fuel quality. These systems can transmute the spent fuel, eventually 232Th or 238U without affecting maintenance of fission reaction. Additionally subcritical blanket ensures high safety. For these systems it is necessary to know the cross sections of reactions of fast neutrons produced in the spallation reaction with different materials. This data is necessary not only for the selection of appropriate construction materials, but also for creation of programs simulating accelerator driven transmutation systems. This thesis is focused on the experimental determination of cross sections of reactions 89Y(n,2n)88Y and 89Y(n,3n)87Y with neutron energies from 17,6 to 33,6 MeV. Yttrium is analyzed for its (n,xn) threshold reactions, which makes it appropriet activation detector for study of the neutron fields in model configurations of accelerator driven transmutation systems. The obtained cross sections are unique, in that so far there are no experimental data for used neutron energies.
Investigation of Thorium Utilization in Accelerator Driven Nuclear Reactors
Král, Dušan ; ČR, Petr Chudoba, ÚJF AV (referee) ; Zeman, Miroslav (advisor)
This thesis deals with the idea of using accelerator driven systems for thorium transmutation into the fissile material, which can be utilized in the accelerator driven systems and in thermal nuclear reactors. Thorium occurs on Earth only in fertile isotope Th-232. It can be converted to fissile U-233 by neutron capture and subsequent beta decay. The experimental part handles the data measured by the irradiation of four thorium samples by the secondary neutrons in the QUINTA spallation target, which was irradiated with 660~MeV protons. Reaction rates for the fission and spallation products were estimated using gamma spectroscopy and activation techniques. Furthermore, Pa-233 production rates were also determined in all experimental samples. Pa-233 and fission production rates were calculated in all experimental samples using the MCNPX transport code and evaluated nuclear data for high-energy reactions. The experimental results are of a great importance for the future investigation of thorium in the accelerator driven system concept, validation of Monte-Carlo based calculation codes and validation of high-energy nuclear models.
Experimental Investigation of Accelerator Driven Nuclear Reactors for Thorium Based Nuclear Power
Zeman, Miroslav ; ČR,, Milan Štefánik, UJF AV (referee) ; Katovský, Karel (advisor)
The Master Thesis deals with the use of thorium nuclear fuel in accelerator driven systems. Basic principle of ADS, present situation and future possibilities are described in this work. The main goal of the work is determination of neutron flux in spallation target QUINTA. In December 2013, an experiment was performed at Joint Institute for Nuclear Research, Dubna. Samples of cobalt, situated at different positions in QUINTA target, were irradiated in secondary neutron field generated by deuteron beam of energies 2 AGeV and 4 AGeV and beam of C-12 with energy 2 AGeV. The samples were measured with the use of germanium semiconductor detectors and analysed using gamma-ray spectrometry. Reaction rates of Co-59 products were determined. Neutron flux was determined in setup QUINTA on the base of experimental reaction rates. Experimental reaction rates were compared with calcula1tion of MCNPX code.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.