National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
The role of G protein-coupled receptor signaling systems in neuroprotection
Hofmannová, Adéla ; Novotný, Jiří (advisor) ; Rudajev, Vladimír (referee)
Nervous tissue, especially the brain, is very sensitive to the lack of oxygen and nutrients. Without supply of these components, the tissue endures only a few minutes and then, after the depletion of all ATP, permanent damage or even cell death occurs in neurons and glial cells. During ischemia or hypoxia, an excessive amount of the excitant neurotransmitter glutamate is released, which is neurotoxic. It causes ion imbalance and also apoptotic signaling pathways may be triggered because of the high level of intracellular calcium. Signaling through G protein-coupled receptors (GPCRs) can be involved in the establishment of increased cell resilience to hypoxic injury. Stimulation of some GPCRs, e.g. adenosine, opioid, cannabinoid and melatonin receptors, can afford neuroprotection. Activation of their cognate G proteins may lead to blockade of ion channels or affect the effector proteins, thus helping the stabilization of ion homeostasis and the inhibition of glutamate release. Moreover, some of the receptor agonists have antioxidant character, whereby they prevent the harmful action of free radicals. Neuroprotective mechanisms promote neuronal survival during harmful conditions and are also able to slow down the processes responsible for the development of neurodegenerative diseases. Key words: G...
Lipid rafts and their role in transmembrane signaling mediated by G protein-coupled receptors
Ševčíková, Adéla ; Novotný, Jiří (advisor) ; Funda, Jiří (referee)
Membrane microdomains enriched in cholesterol and sphingolipids, known as lipid rafts and caveolae, contribute to many cellular processes including cholesterol homeostasis or lateral segregation of membrane proteins. This bachelor thesis describes the role of these membrane microdomains on transmembrane signaling mediated by G protein-coupled receptors. This is the most numerous and diverse family of receptors in mammalian cells that can affect a large number of physiological functions of the organism. A large amount of GPCR located in the membrane microdomains that concentrate specific signal components increase the variability of signaling. This issue is very complicated because the methods used to characterize these variable structures have limitations and each of the receptors exhibits specific behaviour. Key words: GPCRs, G proteins, lipid rafts, caveolae, transmembrane signaling
The role of G protein-coupled receptor signaling systems in neuroprotection
Hofmannová, Adéla ; Novotný, Jiří (advisor) ; Rudajev, Vladimír (referee)
Nervous tissue, especially the brain, is very sensitive to the lack of oxygen and nutrients. Without supply of these components, the tissue endures only a few minutes and then, after the depletion of all ATP, permanent damage or even cell death occurs in neurons and glial cells. During ischemia or hypoxia, an excessive amount of the excitant neurotransmitter glutamate is released, which is neurotoxic. It causes ion imbalance and also apoptotic signaling pathways may be triggered because of the high level of intracellular calcium. Signaling through G protein-coupled receptors (GPCRs) can be involved in the establishment of increased cell resilience to hypoxic injury. Stimulation of some GPCRs, e.g. adenosine, opioid, cannabinoid and melatonin receptors, can afford neuroprotection. Activation of their cognate G proteins may lead to blockade of ion channels or affect the effector proteins, thus helping the stabilization of ion homeostasis and the inhibition of glutamate release. Moreover, some of the receptor agonists have antioxidant character, whereby they prevent the harmful action of free radicals. Neuroprotective mechanisms promote neuronal survival during harmful conditions and are also able to slow down the processes responsible for the development of neurodegenerative diseases. Key words: G...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.