National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Visualization of selected flows of water and cryogenic helium using tracer particles
Pilcová, Veronika ; Skrbek, Ladislav (advisor) ; Kohout, Jaroslav (referee)
Flow visualization techniques have recently been applied for the investigation of various cryogenic flows of liquid helium. Particle image velocimetry and particle tracking velocimetry techniques, proven in the past as very fruitful in many scientific and industrial areas of research, are being used for the analysis of cryogenic flows. The Joint Low Temperature Laboratory at the Charles University in Prague is the first in Europe to employ flow visualization techniques to investigate liquid helium flows. The approach had to be optimized due to a number of technical and fundamental dificulties, i.e., the optical access to the helium bath and choice of suitable tracer particles. Water experiments at room temperature were performed to prove that the experimental apparatus is well-suited for the low-temperature experiments performed as the main part of the work. The latter focused on thermal counter flow. The results from both, room-temperature experiments and low-temperature experiments are discussed and positively compared with well-known theoretical results.
Visualization of selected flows of water and cryogenic helium using tracer particles
Pilcová, Veronika ; Skrbek, Ladislav (advisor) ; Kohout, Jaroslav (referee)
Flow visualization techniques have recently been applied for the investigation of various cryogenic flows of liquid helium. Particle image velocimetry and particle tracking velocimetry techniques, proven in the past as very fruitful in many scientific and industrial areas of research, are being used for the analysis of cryogenic flows. The Joint Low Temperature Laboratory at the Charles University in Prague is the first in Europe to employ flow visualization techniques to investigate liquid helium flows. The approach had to be optimized due to a number of technical and fundamental dificulties, i.e., the optical access to the helium bath and choice of suitable tracer particles. Water experiments at room temperature were performed to prove that the experimental apparatus is well-suited for the low-temperature experiments performed as the main part of the work. The latter focused on thermal counter flow. The results from both, room-temperature experiments and low-temperature experiments are discussed and positively compared with well-known theoretical results.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.