National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Prediction of shotcrete behavior applying elastoplastic material model
Kejík, Vít ; Miča, Lumír (referee) ; Chalmovský, Juraj (advisor)
This work is focused on the application of advanced elasto-plastic material model intended for shotcrete. Spatial mathematical models of two laboratory tests are created, where this model is used. The first test is a three-point bending concrete specimen. Next, the behavior of the material is analyzed, in which input parameters are entered. Consequently, two reverse analyzes of the available data are analyzed where a match between prediction and measurement can be obtained. The second test is a modified tensile test, where is describe the material behavior in changing of input parameters. Subsequently, reverse data analysis is created, where an acceptable match between prediction and measurement is possible. In every study, the stress waveform in the fracture process zone is analyzed to more detail.
Evaluation of load-deformation characteristics of glued timber using DIC analysis
Šot, Michal ; Vejpustek,, Zdeněk (referee) ; Vaněrek, Jan (advisor)
The work deals with issues of evaluation of the shear properties of timber structural materials, particularly CLT elements. The work contains an overview of extensive research so far presented scientific studies dealing with the characteristic shear properties of wood. In the practical part was carried out the experiment dealing with the failure mode of transverse lamellae of CLT elements that were exposed to shear stress. There were observed individual effects that this may affect the material properties. In the first part of the experiment were performed numerical models using FEM. In the second part, the test specimens were tested in three point bending. Here, attention was paid to the influence of macroscopic properties of wood on the distribution of stress cracks and shear strength, the tests were recorded using DIC system.
Prediction of shotcrete behavior applying elastoplastic material model
Kejík, Vít ; Miča, Lumír (referee) ; Chalmovský, Juraj (advisor)
This work is focused on the application of advanced elasto-plastic material model intended for shotcrete. Spatial mathematical models of two laboratory tests are created, where this model is used. The first test is a three-point bending concrete specimen. Next, the behavior of the material is analyzed, in which input parameters are entered. Consequently, two reverse analyzes of the available data are analyzed where a match between prediction and measurement can be obtained. The second test is a modified tensile test, where is describe the material behavior in changing of input parameters. Subsequently, reverse data analysis is created, where an acceptable match between prediction and measurement is possible. In every study, the stress waveform in the fracture process zone is analyzed to more detail.
Time lapse tomography of fracture progress in silicate-based composite subjected to the loading a combination with acoustic emission scanning
Kumpová, Ivana ; Kytýř, Daniel ; Fíla, Tomáš ; Veselý, V. ; Trčka, T. ; Vopálenský, Michal ; Vavřík, Daniel
The initiation and propagation of a fracture in quasi-brittle materials (such as silicatebased composite) is an increasingly discussed topic for which various methods of research have been developed/applied. As the quasi-brittle silicate-based composite compounds are very non-homogenous, the mechanism of the crack initiation and propagation can be very different even for samples with the\nidentical geometry. One possible approach to study the fracture mechanism in quasi-brittle materials is to use several different experimental techniques in a single experiment and perform detail analysis to identify generally valid fracture process phenomena. In this work, a simultaneous monitoring of fracture\nprocess zone formation and propagation by three different methods is presented and discussed. A three point bending test was performed on a notched silicate composite specimen. During the loading process, a highly accurate force displacement dependence was recorded accompanied with X-ray radiography,\nX-ray computed tomogra-phy and acoustic emission scanning.
Evaluation of load-deformation characteristics of glued timber using DIC analysis
Šot, Michal ; Vejpustek,, Zdeněk (referee) ; Vaněrek, Jan (advisor)
The work deals with issues of evaluation of the shear properties of timber structural materials, particularly CLT elements. The work contains an overview of extensive research so far presented scientific studies dealing with the characteristic shear properties of wood. In the practical part was carried out the experiment dealing with the failure mode of transverse lamellae of CLT elements that were exposed to shear stress. There were observed individual effects that this may affect the material properties. In the first part of the experiment were performed numerical models using FEM. In the second part, the test specimens were tested in three point bending. Here, attention was paid to the influence of macroscopic properties of wood on the distribution of stress cracks and shear strength, the tests were recorded using DIC system.
Experimental study of tile grout material behavior
Kumpová, Ivana ; Kloiber, Michal ; Ševčík, Radek ; Kytýř, Daniel
Study provides preliminary results of experimental study of tile grout material behavior. Experiments were performed with the use of microCT, three point bending test and methods for chemical analysis. It was proven that material behave very elastic and the suitability of the combination of used methods.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.