National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Characterization of plasma during organosilicone thin film deposition using haxamethyldisiloxane monomer
Blahová, Lucie ; Mazánková, Věra (referee) ; Krčma, František (advisor)
The aim of this thesis is plasma diagnostic during deposition of thin films based on organosilicones. Hexamethyldisiloxane was used as a precursor for plasma deposition in the presence of oxygen, and the diagnosis was performed by using optical emission spectroscopy. The theoretical part summarizes the basic characteristics of plasma and processes occurred at plasma polymerization and deposition. It also deals with thin films and their use in coating materials. A relatively large part is devoted to the specification of the physical-chemical nature of the used analytical method – optical emission spectroscopy. Finally, the principles of rotational, vibrational and electron temperature calculations are described. The contemporary deposition process was carried out in continuous and pulsed mode of radiofrequently excited capacitively coupled discharge. The effects of monomer flow rate, plasma power and duty cycle on the deposition process were studied. In the individual spectra, atomic hydrogen lines of Balmer’s series as well as an atomic oxygen line were identified. Molecular bands of CO have been identified as Angstrom’s system and 3. positive system. In the case of the identified fragments, the intensity dependencies on the monomer concentration in mixture, plasma power and duty cycle were detected. Electron temperature of plasma was also calculated using the relative intensities of atomic hydrogen lines of Balmer’s series. Vibrational and rotational temperature could not have been determined because no suitable fragments for their determination were found in the spectrum. Based on findings mentioned above, partial composition of plasma and some of its properties were estimated. The subject of the further research will be determination of the exact content and structure of the thin films and investigation of other plasma characteristics. Plasma deposition is influenced by many factors, and the study of their optimal combination for the most efficient deposition process is a goal for the future research.
Characterization of plasma during organosilicone thin film deposition using haxamethyldisiloxane monomer
Blahová, Lucie ; Mazánková, Věra (referee) ; Krčma, František (advisor)
The aim of this thesis is plasma diagnostic during deposition of thin films based on organosilicones. Hexamethyldisiloxane was used as a precursor for plasma deposition in the presence of oxygen, and the diagnosis was performed by using optical emission spectroscopy. The theoretical part summarizes the basic characteristics of plasma and processes occurred at plasma polymerization and deposition. It also deals with thin films and their use in coating materials. A relatively large part is devoted to the specification of the physical-chemical nature of the used analytical method – optical emission spectroscopy. Finally, the principles of rotational, vibrational and electron temperature calculations are described. The contemporary deposition process was carried out in continuous and pulsed mode of radiofrequently excited capacitively coupled discharge. The effects of monomer flow rate, plasma power and duty cycle on the deposition process were studied. In the individual spectra, atomic hydrogen lines of Balmer’s series as well as an atomic oxygen line were identified. Molecular bands of CO have been identified as Angstrom’s system and 3. positive system. In the case of the identified fragments, the intensity dependencies on the monomer concentration in mixture, plasma power and duty cycle were detected. Electron temperature of plasma was also calculated using the relative intensities of atomic hydrogen lines of Balmer’s series. Vibrational and rotational temperature could not have been determined because no suitable fragments for their determination were found in the spectrum. Based on findings mentioned above, partial composition of plasma and some of its properties were estimated. The subject of the further research will be determination of the exact content and structure of the thin films and investigation of other plasma characteristics. Plasma deposition is influenced by many factors, and the study of their optimal combination for the most efficient deposition process is a goal for the future research.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.