National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Programmable illuminating system for an optical microscope
Lošťák, Martin ; Křupka, Ivan (referee) ; Chmelík, Radim (advisor)
A programmable illuminating system (PIS) uses a commercial multimedia projector together with a suitable optical relay system in order to illuminate specimens under microscope with transmitted light. The theoretical part of the diploma thesis describes some methods used in the optical transmission microscopy. All of these methods employ physical masks placed in the condenser front focal plane. In the case of the traditional methods the masks are used to enhance contrast (e.g. dark-field illumination) and resolution (oblique illumination). One of the methods (a condenser with rotating aperture) provides the information about the three-dimensionality of the specimen. The next part of the thesis contains the theory and the basic classification of the illuminating systems used in the optical transmission microscopy. An optical and mechanical design of the optical relay system used for PIS is introduced. The experimental part shows the results made with two different PIS arrangements. It was shown on two different specimens that the PIS provides the same illumination as the classical methods. It was also proved that the PIS can simulate the rotating aperture in the condenser front focal plane and thus to give the information about the three-dimensionality of the specimen. Some new static and dynamic illuminating methods were introduced.
Measurement of extinction spectra of optically trapped plasmon nano-particles
Flajšmanová, Jana ; Jonáš,, Alexander (referee) ; Brzobohatý, Oto (advisor)
This thesis deals with the dark-field imaging and the optical spectroscopy of optically trapped plasmonic nanoparticles. The optical trapping and the characterization of a single particle or multiple nanoparticles as well are demonstrated. The number of the optically trapped particles can be estimated from the dark-field scattering intensity. Experiments show the presence of the interparticle coupling among trapped metallic nanoparticles which has not been observed in case of dielectric particles. The scattering spectra of the plasmonic nanoparticles were compared with theoretical models based on the Mie theory and the Discrete dipole approximation.
Measurement of extinction spectra of optically trapped plasmon nano-particles
Flajšmanová, Jana ; Jonáš,, Alexander (referee) ; Brzobohatý, Oto (advisor)
This thesis deals with the dark-field imaging and the optical spectroscopy of optically trapped plasmonic nanoparticles. The optical trapping and the characterization of a single particle or multiple nanoparticles as well are demonstrated. The number of the optically trapped particles can be estimated from the dark-field scattering intensity. Experiments show the presence of the interparticle coupling among trapped metallic nanoparticles which has not been observed in case of dielectric particles. The scattering spectra of the plasmonic nanoparticles were compared with theoretical models based on the Mie theory and the Discrete dipole approximation.
Programmable illuminating system for an optical microscope
Lošťák, Martin ; Křupka, Ivan (referee) ; Chmelík, Radim (advisor)
A programmable illuminating system (PIS) uses a commercial multimedia projector together with a suitable optical relay system in order to illuminate specimens under microscope with transmitted light. The theoretical part of the diploma thesis describes some methods used in the optical transmission microscopy. All of these methods employ physical masks placed in the condenser front focal plane. In the case of the traditional methods the masks are used to enhance contrast (e.g. dark-field illumination) and resolution (oblique illumination). One of the methods (a condenser with rotating aperture) provides the information about the three-dimensionality of the specimen. The next part of the thesis contains the theory and the basic classification of the illuminating systems used in the optical transmission microscopy. An optical and mechanical design of the optical relay system used for PIS is introduced. The experimental part shows the results made with two different PIS arrangements. It was shown on two different specimens that the PIS provides the same illumination as the classical methods. It was also proved that the PIS can simulate the rotating aperture in the condenser front focal plane and thus to give the information about the three-dimensionality of the specimen. Some new static and dynamic illuminating methods were introduced.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.