National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Detection of quantized vortices in the zero temperature limit using silicon/superconducting microwires
Goleňa, Maximilián ; Schmoranzer, David (advisor) ; Kohout, Jaroslav (referee)
In this Thesis, we have characterized and used Microscopic Electrical Mechanical Oscillators (MEMS) in the study of quantum turbulence. Experiments were conducted in the temperature range of 20-920 mK in vacuum in various magnetic Ąelds and in superĆuid helium at temperature 20 mK. Resonance properties of MEMS in vacuum showed nonlinear behavior. Low drive peaks showed frequency softening, and high drive peaks showed frequency hardening. We showed that the origin of non-linear behavior lies in the geometry of MEMS. We have shown that our devices are superconductive in Ąeld 12.6 mT and is resistive for higher Ąelds. Resonance properties of MEMS do not signiĄcantly change with magnetic Ąelds in range 37.8-504 mT. We shown that the motion of MEMS in superĆuid helium is highly damped and all measured points were already in turbulent state. MEMS devices can be used to generate quantum turbulence or as itsŠ highly effective local probe. 1

Interested in being notified about new results for this query?
Subscribe to the RSS feed.