National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Expression and characterisation of homologs of human glutamate carboxypeptidase II
Bäumlová, Adriana ; Konvalinka, Jan (advisor) ; Vaněk, Ondřej (referee)
English abstract Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a membrane bound glycoprotein that belongs to the metallopeptidase M28 family. Two physiological substrates were found for GCPII. The first one, N-acetyl-aspartylglutamate (NAAG), serves as a neurotransmiter in the brain and GCPII hydrolyzes it to yield free glutamate in the synaptic cleft. Excess glutamate might be cytotoxic and eventually lead to excitoxic nerve cells death. Inhibition of NAAG hydrolyzing activity has been shown to be neuroprotective. Therefore, GCPII inhibition was suggested as a therapeutic target in treatment of neurological disorders where excess glutamate is involved. The second substrate, polyglutamyl folate, is a precursor of folic acid which is required for cell growth and development. GCPII cleaves off glutamate from dietary folates and thus facilitates their absorption in small intestine. Although GCPII biological relevance is known only in the brain and the small intestine, its role in the prostate is also important. GCPII has been described as a prostate cancer marker as it is expressed on the membrane of prostate cancer cells. Since GCPII is type II transmembrane protein, it is enzymatically active and undergoes internalization, it has been suggested as a promising tool for specific anticancer-drug...
Expression and characterisation of homologs of human glutamate carboxypeptidase II
Bäumlová, Adriana ; Konvalinka, Jan (advisor) ; Vaněk, Ondřej (referee)
English abstract Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a membrane bound glycoprotein that belongs to the metallopeptidase M28 family. Two physiological substrates were found for GCPII. The first one, N-acetyl-aspartylglutamate (NAAG), serves as a neurotransmiter in the brain and GCPII hydrolyzes it to yield free glutamate in the synaptic cleft. Excess glutamate might be cytotoxic and eventually lead to excitoxic nerve cells death. Inhibition of NAAG hydrolyzing activity has been shown to be neuroprotective. Therefore, GCPII inhibition was suggested as a therapeutic target in treatment of neurological disorders where excess glutamate is involved. The second substrate, polyglutamyl folate, is a precursor of folic acid which is required for cell growth and development. GCPII cleaves off glutamate from dietary folates and thus facilitates their absorption in small intestine. Although GCPII biological relevance is known only in the brain and the small intestine, its role in the prostate is also important. GCPII has been described as a prostate cancer marker as it is expressed on the membrane of prostate cancer cells. Since GCPII is type II transmembrane protein, it is enzymatically active and undergoes internalization, it has been suggested as a promising tool for specific anticancer-drug...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.