National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Automotive plastics with increased scratch resistance
Vida, Mikuláš ; Kučera, František (referee) ; Jančář, Josef (advisor)
The aim of this bachelor thesis was the investigation of changes of mechanical and rheological properties of nanocomposites based on PMMA, where filler was fumed silica of four types (different surface area and producer). The thesis focuses on the theoretical part of the current state of research, preparation and properties of nanocomposites. The solvent method was chosen for the preparation of nanocomposites, where silica was mixed with dissolved PMMA. Tensile mechanical properties were measured below Tg, while viscoelastic response was measured above Tg. Silica had not significant influence on the modulus below Tg, but above Tg (180 °C) both modulus, storage and loss, have increased with increasing silica content and with increasing frequency (0,1–100 Hz). The particle size and surface area of silica in a content of 1 % influenced storage modulus of nanocomposites more with respect to the content of 2 %. For samples containing 1 % showed that the significant role played particle size and surface area of silica. The greatest increase of storage and loss modulus of PMMA was reached for silica M-5 in content 1 %. All type of silica decreased tensile strength and strain with increasing silica content in the same way.
Polymer nanocomposites with PMMA matrix
Kostková, Jana ; Žídek, Jan (referee) ; Jančář, Josef (advisor)
This bachelor thesis deals with s study of mechanical and viscoelastic properties of nanocomposites with PMMA matrix filled with different types of surface-modified silica, which differed by the specific surface area, surface treatment and particle size. Nanocomposites were prepared by dissolving, where nanofillers were injected into the dissolved matrix. Nanocomposite samples were tested in tensil and viscoelastic properties were determined till the softening point by dynamic-mechanical analysis (DMA). All types of nanofillers had almost no effect on tensile modulus of nanocomposites at room temperature (it was not reduced) one type of silica at a content 2 %, which was also confirmed by the DMA. The temperature DMA measurements showed that samples containing 2 % of silica were generally thermally more stable compared with nanocomposites containing 1 % of silica. Storage modulus of nanocomposites, except two ones, were similar or lower such pure PMMA to temperature 66 C, then the trend reversed. Loss modulus of all samples was one order of magnitude lower then the elastic modulus.
Automotive plastics with increased scratch resistance
Vida, Mikuláš ; Kučera, František (referee) ; Jančář, Josef (advisor)
The aim of this bachelor thesis was the investigation of changes of mechanical and rheological properties of nanocomposites based on PMMA, where filler was fumed silica of four types (different surface area and producer). The thesis focuses on the theoretical part of the current state of research, preparation and properties of nanocomposites. The solvent method was chosen for the preparation of nanocomposites, where silica was mixed with dissolved PMMA. Tensile mechanical properties were measured below Tg, while viscoelastic response was measured above Tg. Silica had not significant influence on the modulus below Tg, but above Tg (180 °C) both modulus, storage and loss, have increased with increasing silica content and with increasing frequency (0,1–100 Hz). The particle size and surface area of silica in a content of 1 % influenced storage modulus of nanocomposites more with respect to the content of 2 %. For samples containing 1 % showed that the significant role played particle size and surface area of silica. The greatest increase of storage and loss modulus of PMMA was reached for silica M-5 in content 1 %. All type of silica decreased tensile strength and strain with increasing silica content in the same way.
Polymer nanocomposites with PMMA matrix
Kostková, Jana ; Žídek, Jan (referee) ; Jančář, Josef (advisor)
This bachelor thesis deals with s study of mechanical and viscoelastic properties of nanocomposites with PMMA matrix filled with different types of surface-modified silica, which differed by the specific surface area, surface treatment and particle size. Nanocomposites were prepared by dissolving, where nanofillers were injected into the dissolved matrix. Nanocomposite samples were tested in tensil and viscoelastic properties were determined till the softening point by dynamic-mechanical analysis (DMA). All types of nanofillers had almost no effect on tensile modulus of nanocomposites at room temperature (it was not reduced) one type of silica at a content 2 %, which was also confirmed by the DMA. The temperature DMA measurements showed that samples containing 2 % of silica were generally thermally more stable compared with nanocomposites containing 1 % of silica. Storage modulus of nanocomposites, except two ones, were similar or lower such pure PMMA to temperature 66 C, then the trend reversed. Loss modulus of all samples was one order of magnitude lower then the elastic modulus.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.