National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Simple Electrochemical DNA Biosensor for Detection of DNA Damage Caused by UV Radiation
Arustamian, Daria ; Vyskočil, Vlastimil (advisor) ; Dejmková, Hana (referee)
Ultraviolet (UV) radiation is a common DNA damaging agent. Major DNA lesions, such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone (6-4PPs) photoproducts, are carcinogenic and mutagenic. UV induced DNA damage was investigated using a simple electrochemical DNA biosensor based on an ultra-trace graphite electrode (UTGE) and low molecular weight doble-stranded DNA (dsDNA) from salmon sperm. Biosensor was prepared using adsorption of dsDNA on a surface of the UTGE and then used to detect UV-induced DNA damage. Effects of UV radiation were investigated using a combination of several electrochemical technics: square-wave voltammetry (SWV) for direct monitoring of DNA base oxidation and cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), as non-direct methods, using redox-active indicator [Fe(CN)6]4-/3- . CV and EIS, which allow characterization of electrode surface, were used to optimize preparation of the dsDNA/UTGE biosensor. Prepared dsDNA/UTGE biosensor was exposed to UV radiation using UV lamp with two set wavelengths: UVC of 254 nm and UVA of 365 nm. UVC radiation was used to damage DNA. Relative signal decrease was 50% after 20 minutes of exposure to UVC radiation. UVA radiation was used to compare effects of different types of UV radiation. Obtained...
Voltammetry with Preliminary Extraction as a New Approach for Rapid Determination of Formaldehyde in Wood-Based Products
Dvořák, Pavel ; Vyskočil, Vlastimil (advisor) ; Dejmková, Hana (referee)
The aim of the presented Diploma Thesis was to develop a new method for the indirect determination of formaldehyde in wood-based products using gas-diffusion microextraction coupled with electrochemical detection on unmodified screen-printed electrodes (MLEM-SPCE). Formaldehyde released from the sample is derivatized using an acetylacetone reagent present in an acceptor solution. The product of derivatization of formaldehyde with acetylacetone is 3,5-diacetyl-1,4-dihydrolutidine (DDL) which forms a selective oxidation voltammetric peak at a potential of 0.4 V. Detection and quantification limits of 0.57 mg kg−1 and 1.89 mg kg−1 , respectively, were obtained, together with intra- and inter-day precision below 10% (as relative standard deviation, RSD). The developed methodology was applied to determine formaldehyde content in seven samples. Similar results were obtained from the European standard method EN 717-3 with a significant reduction of total analysis time. The developed method MLEM-SPCE, which combines the use of a new sample preparation procedure for volatile compounds with the firstly introduced determination of formaldehyde (as the derivative product DDL) on unmodified SPCEs, proves to be a promising alternative for the determination of formaldehyde in wood-based products and other samples.
Simple Electrochemical DNA Biosensor for Detection of DNA Damage Caused by UV Radiation
Arustamian, Daria ; Vyskočil, Vlastimil (advisor) ; Dejmková, Hana (referee)
Ultraviolet (UV) radiation is a common DNA damaging agent. Major DNA lesions, such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone (6-4PPs) photoproducts, are carcinogenic and mutagenic. UV induced DNA damage was investigated using a simple electrochemical DNA biosensor based on an ultra-trace graphite electrode (UTGE) and low molecular weight doble-stranded DNA (dsDNA) from salmon sperm. Biosensor was prepared using adsorption of dsDNA on a surface of the UTGE and then used to detect UV-induced DNA damage. Effects of UV radiation were investigated using a combination of several electrochemical technics: square-wave voltammetry (SWV) for direct monitoring of DNA base oxidation and cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), as non-direct methods, using redox-active indicator [Fe(CN)6]4-/3- . CV and EIS, which allow characterization of electrode surface, were used to optimize preparation of the dsDNA/UTGE biosensor. Prepared dsDNA/UTGE biosensor was exposed to UV radiation using UV lamp with two set wavelengths: UVC of 254 nm and UVA of 365 nm. UVC radiation was used to damage DNA. Relative signal decrease was 50% after 20 minutes of exposure to UVC radiation. UVA radiation was used to compare effects of different types of UV radiation. Obtained...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.