National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Study of the effect of spin-orbit interaction in solids
Mrozek, Jan ; Carva, Karel (advisor) ; Šipr, Ondřej (referee)
One of the effects the spin orbit interaction leads to is the Anomalous Hall effect. In this thesis we describe the origins of the Anomalous Hall effect and its con- tribution to understanding the solid state physics. We introduce the formalism of linear response theory and other approximations needed to perform calcula- tions of the Anomalous Hall conductivity. We present two different models of the anomalous Hall conductivity - one based on the Kubo formalism and the other based on chemical potential difference. We then compare the models in a simple setting based on Strontium ruthenate. We show that in the case of Strontium ruthenate the models have very similar predictions. 1
Relativistic Theory of Electron Transport in Magnetic Layers
Sýkora, Rudolf ; Turek, Ilja (advisor) ; Šob, Mojmír (referee) ; Drchal, Václav (referee)
Title: Relativistic Theory of Electron Transport in Magnetic Layers Author: Rudolf Sýkora Department / Institute: Institude of Theoretical Physics Supervisor of the doctoral thesis: doc. RNDr. Ilja Turek, DrSc., Department of Condensed Matter Physics Abstract: We review the density-functional theory (DFT) in detail using the Levy Lieb ap- proach. The Kohn Sham scheme is discussed, starting from the simplest spinless non- relativistic case, then including spin and considering potential spin magnetism, and finally deriv- ing the full Kohn Sham Dirac relativistic scheme. The Linear Muffin-Tin Orbital (LMTO) method for electronic-structure calculation is presented, together with mentioning the necessary changes to include the spin-orbit (SO) interaction effects to an otherwise scalar-relativistic (SR) theory. Derivation of an electronic-conductance formula for a layered system is given, based on the Landauer scattering picture and using simple non-equilibrium Green functions. The formal- ism is applied to layered metallic systems of light elements Co, Ni, Cu elements, and to layered systems with a tunnelling barrier, Fe/MgO/Ag and Fe/GaAs/Ag. The effects of the SO interac- tion on the Giant Magnetoresistance (GMR) ratio and/or the Tunnelling Anisotropy Magnetore- sistance (TAMR) for these systems are discussed....

Interested in being notified about new results for this query?
Subscribe to the RSS feed.