National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
System for measuring of thermal efficiency of solar absorbers
Řiháček, Jan ; Podaný, Kamil (referee) ; Mrňa, Libor (advisor)
The thesis deals with the measurement system for determining the thermal efficiency of the newly developed types of solar absorbers. Measuring equipment allows simultaneous indoor or outdoor thermal efficiency detection of up to four samples absorbers. Emphasis is placed on the flow and heat transfer medium temperature changes. For this purpose is used Biotech FCH-m-POM-LC and LM35DZ sensors. Sensor signal is transferred to a PC using the measuring module NI USB-6221. Here it is further processed by proposed evaluation program. The software is implemented in LabVIEW integrated development environment. In a final part are performed a verification measurements to assess system performance and evaluate the thermal efficiency of various types of solar absorbers. This path is also demonstrated high efficiency applications absorbent layer coating color RABSORB 5.
Utilization of Hydroforming Technology to Create a Structured Surface of Solar Panel
Řiháček, Jan ; Mašek, Bohuslav (referee) ; Lidmila, Zdeněk (referee) ; Mrňa, Libor (advisor)
The doctoral thesis deals with utilization of hydroforming technology for manufacturing of a new type of solar absorber, which has directly flow meandering structure and a structured surface consisting of pyramidal elements. Austenitic stainless steel X5CrNi18-10 is used as a material for absorbers production. At the beginning of the thesis, a literary research is performed, which is focused on particular methods of hydroforming technology, their applicability for this problem, forming limits determination and usability of numerical simulation. Based on the literature study, the production technology was developed by using parallel hydroforming technology and it was optimized by using a numerical simulation in the ANSYS software. Hydroforming parameters for two variants of the structured surface with pyramidal cavities with apex angle of 90° and 60° were determined from the calculations and the material tests.
The use of thermal spraying Al layer for absorptive layer of solar absorbers
Urbanovský, Jan ; Kubíček, Jaroslav (referee) ; Mrňa, Libor (advisor)
The thesis engage in structure of solar collectors in theoretical part. Secondly, theory of thermal spraying coating and anodizing is subscribed. In practical part of thesis is proposition of producing a spectral selective surface suitable for solar absorbers. Finally the properties of the samples are checked by thermographic camera shots.
Utilization of Hydroforming Technology to Create a Structured Surface of Solar Panel
Řiháček, Jan ; Mašek, Bohuslav (referee) ; Lidmila, Zdeněk (referee) ; Mrňa, Libor (advisor)
The doctoral thesis deals with utilization of hydroforming technology for manufacturing of a new type of solar absorber, which has directly flow meandering structure and a structured surface consisting of pyramidal elements. Austenitic stainless steel X5CrNi18-10 is used as a material for absorbers production. At the beginning of the thesis, a literary research is performed, which is focused on particular methods of hydroforming technology, their applicability for this problem, forming limits determination and usability of numerical simulation. Based on the literature study, the production technology was developed by using parallel hydroforming technology and it was optimized by using a numerical simulation in the ANSYS software. Hydroforming parameters for two variants of the structured surface with pyramidal cavities with apex angle of 90° and 60° were determined from the calculations and the material tests.
Utilization of hydroforming technology to create a structured surface of solar panel
Řiháček, Jan ; Mrňa, Libor (advisor)
The doctoral thesis deals with utilization of hydroforming technology for manufacturing of a new type of solar absorber, which has directly flow meandering structure and a structured surface consisting of pyramidal elements. Austenitic stainless steel X5CrNi18-10 is used as a material for absorbers production. At the beginning of the thesis, a literary research is performed, which is focused on particular methods of hydroforming technology, their applicability for this problem, forming limits determination and usability of numerical simulation. Based on the literature study, the production technology was developed by using parallel hydroforming technology and it was optimized by using a numerical simulation in the ANSYS software. Hydroforming parameters for two variants of the structured surface with pyramidal cavities with apex angle of 90° and 60° were determined from the calculations and the material tests.
The use of thermal spraying Al layer for absorptive layer of solar absorbers
Urbanovský, Jan ; Kubíček, Jaroslav (referee) ; Mrňa, Libor (advisor)
The thesis engage in structure of solar collectors in theoretical part. Secondly, theory of thermal spraying coating and anodizing is subscribed. In practical part of thesis is proposition of producing a spectral selective surface suitable for solar absorbers. Finally the properties of the samples are checked by thermographic camera shots.
System for measuring of thermal efficiency of solar absorbers
Řiháček, Jan ; Podaný, Kamil (referee) ; Mrňa, Libor (advisor)
The thesis deals with the measurement system for determining the thermal efficiency of the newly developed types of solar absorbers. Measuring equipment allows simultaneous indoor or outdoor thermal efficiency detection of up to four samples absorbers. Emphasis is placed on the flow and heat transfer medium temperature changes. For this purpose is used Biotech FCH-m-POM-LC and LM35DZ sensors. Sensor signal is transferred to a PC using the measuring module NI USB-6221. Here it is further processed by proposed evaluation program. The software is implemented in LabVIEW integrated development environment. In a final part are performed a verification measurements to assess system performance and evaluate the thermal efficiency of various types of solar absorbers. This path is also demonstrated high efficiency applications absorbent layer coating color RABSORB 5.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.