National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Impact of the glycine-rich loop on the function of processing peptidases of the mitochondrial type
Kučera, Tomáš
A B S T R A C T The majority of the mitochondrial proteins is synthetized on the cytosolic ribosomes in the form of the protein precursors bearing mitochondrion-targeting signal presequences. Once the protein precursor has reached the mitochondrial matrix the signal presequence is no longer necessary and is cleaved off by heterodimeric mitochondrial processing peptidase (MPP; α/β). Although the crystal structure of MPP is available, the MPP mechanism of function is still matter of discussion. An all atomic, non-restrained molecular dynamics (MD) simulation in explicit water was used to study in detail the structural features of the highly conserved glycine-rich loop (GRL) of the regulatory α-subunit of the yeast MPP. Wild-type and GRL-deleted MPP structures were studied both in the presence and absence of a substrate in the peptidase active site. Targeted MD simulations were employed to study the mechanism of substrate translocation from the GRL to the peptidase active site. We demonstrate that the natural conformational flexibility of the GRL is crucial for the substrate translocation process from outside the enzyme towards the MPP active site. We show that the α-helical conformation of the substrate is important not only during its initial interaction with MPP (i.e. substrate recognition), but also later,...
Impact of the glycine-rich loop on the function of processing peptidases of the mitochondrial type
Kučera, Tomáš ; Janata, Jiří (advisor) ; Bařinka, Cyril (referee) ; Ettrich, Rüdiger (referee)
The majority of the mitochondrial proteins is synthetized on the cytosolic ribosomes in the form of the protein precursors bearing mitochondrion-targeting signal presequences. Once the protein precursor has reached the mitochondrial matrix the signal presequence is no longer necessary and is cleaved off by heterodimeric mitochondrial processing peptidase (MPP; α/β). Although the crystal structure of MPP is available, the MPP mechanism of function is still matter of discussion. An all atomic, non-restrained molecular dynamics (MD) simulation in explicit water was used to study in detail the structural features of the highly conserved glycine-rich loop (GRL) of the regulatory α-subunit of the yeast MPP. Wild-type and GRL-deleted MPP structures were studied both in the presence and absence of a substrate in the peptidase active site. Targeted MD simulations were employed to study the mechanism of substrate translocation from the GRL to the peptidase active site. We demonstrate that the natural conformational flexibility of the GRL is crucial for the substrate translocation process from outside the enzyme towards the MPP active site. We show that the α-helical conformation of the substrate is important not only during its initial interaction with MPP (i.e. substrate recognition), but also later, at...
Impact of the glycine-rich loop on the function of processing peptidases of the mitochondrial type
Kučera, Tomáš
A B S T R A C T The majority of the mitochondrial proteins is synthetized on the cytosolic ribosomes in the form of the protein precursors bearing mitochondrion-targeting signal presequences. Once the protein precursor has reached the mitochondrial matrix the signal presequence is no longer necessary and is cleaved off by heterodimeric mitochondrial processing peptidase (MPP; α/β). Although the crystal structure of MPP is available, the MPP mechanism of function is still matter of discussion. An all atomic, non-restrained molecular dynamics (MD) simulation in explicit water was used to study in detail the structural features of the highly conserved glycine-rich loop (GRL) of the regulatory α-subunit of the yeast MPP. Wild-type and GRL-deleted MPP structures were studied both in the presence and absence of a substrate in the peptidase active site. Targeted MD simulations were employed to study the mechanism of substrate translocation from the GRL to the peptidase active site. We demonstrate that the natural conformational flexibility of the GRL is crucial for the substrate translocation process from outside the enzyme towards the MPP active site. We show that the α-helical conformation of the substrate is important not only during its initial interaction with MPP (i.e. substrate recognition), but also later,...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.