National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Expression, characterisation and biological role of Ddi II, putative protein partner of proteasomal complex
Sivá, Monika ; Konvalinka, Jan (advisor) ; Obšil, Tomáš (referee)
Cell homeostasis is maintained via strictly regulated processes. One of the important regulation systems is ubiquitin-proteasome proteolytic pathway. Proteins to be degraded are posttranslationally modified with polyubiquitin chains and targeted to the proteasome for degradation. Ubiquitin-proteasome system consists of several processes: ubiquitination of target substrates via set of enzymes, substrate transfer and degradation in the 26S proteasome. There are two ways of ubiquitinated substrate recognition via proteasome. It is either directly by proteasomal receptors or by protein shuttles. Shuttling factors bind polyubiquitinated target substrate and transfer it to the entrance of proteasomal cavity thanks to their typical domain architecture. The N-terminal ubiquitin-like domain binds to regulatory particle of the proteasome and the C-terminal ubiquitin-associated domain binds polyubiqitinated chains on substrates. This thesis focuses on the human DNA damage-inducible protein homolog 2 (Ddi2), a potential member of protein shuttles of humans, and on the interaction of its ubiquitin-like domain with its putative interaction partner, a proteasomal subunit PSMD2. PSMD2 has been cloned, expressed and purified in sufficient yields for further experiments. "Cold" as well as isotopically labeled UBL domain of...
Expression, characterisation and biological role of Ddi II, putative protein partner of proteasomal complex
Sivá, Monika ; Konvalinka, Jan (advisor) ; Obšil, Tomáš (referee)
Cell homeostasis is maintained via strictly regulated processes. One of the important regulation systems is ubiquitin-proteasome proteolytic pathway. Proteins to be degraded are posttranslationally modified with polyubiquitin chains and targeted to the proteasome for degradation. Ubiquitin-proteasome system consists of several processes: ubiquitination of target substrates via set of enzymes, substrate transfer and degradation in the 26S proteasome. There are two ways of ubiquitinated substrate recognition via proteasome. It is either directly by proteasomal receptors or by protein shuttles. Shuttling factors bind polyubiquitinated target substrate and transfer it to the entrance of proteasomal cavity thanks to their typical domain architecture. The N-terminal ubiquitin-like domain binds to regulatory particle of the proteasome and the C-terminal ubiquitin-associated domain binds polyubiqitinated chains on substrates. This thesis focuses on the human DNA damage-inducible protein homolog 2 (Ddi2), a potential member of protein shuttles of humans, and on the interaction of its ubiquitin-like domain with its putative interaction partner, a proteasomal subunit PSMD2. PSMD2 has been cloned, expressed and purified in sufficient yields for further experiments. "Cold" as well as isotopically labeled UBL domain of...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.