National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Interactions of migrating giant planets and small solar-system bodies
Chrenko, Ondřej ; Brož, Miroslav (advisor)
Changes of semimajor axes of giant planets, which took place 4 billion years ago and evolved the Solar System towards its present state, affected various populations of minor Solar-System bodies. One of these populations was a group of dynamically stable asteroids in the 2:1 mean-motion resonance with Jupiter which reside in two islands of the phase space, denoted A and B, and exhibit lifetimes comparable to the age of the Solar System. The origin of stable asteroids has not been explained so far. Our main goal is to create a viable hypothesis of their origin. We update the resonant population and its physical properties on the basis of up-to-date observational data. Using an N-body model with seven giant planets and the Yarkovsky effect included, we demonstrate that the depletion of island A is faster compared to island B. We then investigate: (i) survivability of primordial resonant asteroids and (ii) capture of the population during planetary migration, using a recently described scenario with an escaping fifth giant planet and a jumping-Jupiter instability. We employ simulations with prescribed migration, smooth late migration and we statistically evaluate the results using dynamical maps. We also model collisions during the last 4 billion years. We conclude that the long-lived group was created by a...
Interactions of migrating giant planets and small solar-system bodies
Chrenko, Ondřej ; Brož, Miroslav (advisor)
Changes of semimajor axes of giant planets, which took place 4 billion years ago and evolved the Solar System towards its present state, affected various populations of minor Solar-System bodies. One of these populations was a group of dynamically stable asteroids in the 2:1 mean-motion resonance with Jupiter which reside in two islands of the phase space, denoted A and B, and exhibit lifetimes comparable to the age of the Solar System. The origin of stable asteroids has not been explained so far. Our main goal is to create a viable hypothesis of their origin. We update the resonant population and its physical properties on the basis of up-to-date observational data. Using an N-body model with seven giant planets and the Yarkovsky effect included, we demonstrate that the depletion of island A is faster compared to island B. We then investigate: (i) survivability of primordial resonant asteroids and (ii) capture of the population during planetary migration, using a recently described scenario with an escaping fifth giant planet and a jumping-Jupiter instability. We employ simulations with prescribed migration, smooth late migration and we statistically evaluate the results using dynamical maps. We also model collisions during the last 4 billion years. We conclude that the long-lived group was created by a...
Interactions of migrating giant planets and small solar-system bodies
Chrenko, Ondřej ; Brož, Miroslav (advisor) ; Wünsch, Richard (referee)
Changes of semimajor axes of giant planets, which took place 4 billion years ago and evolved the Solar System towards its present state, affected various populations of minor Solar-System bodies. One of these populations was a group of dynamically stable asteroids in the 2:1 mean-motion resonance with Jupiter which reside in two islands of the phase space, denoted A and B, and exhibit lifetimes comparable to the age of the Solar System. The origin of stable asteroids has not been explained so far. Our main goal is to create a viable hypothesis of their origin. We update the resonant population and its physical properties on the basis of up-to-date observational data. Using an N-body model with seven giant planets and the Yarkovsky effect included, we demonstrate that the depletion of island A is faster compared to island B. We then investigate: (i) survivability of primordial resonant asteroids and (ii) capture of the population during planetary migration, using a recently described scenario with an escaping fifth giant planet and a jumping-Jupiter instability. We employ simulations with prescribed migration, smooth late migration and we statistically evaluate the results using dynamical maps. We also model collisions during the last 4 billion years. We conclude that the long-lived group was created by a...
Asteroid families and their relation to planetary migration
Rozehnal, Jakub ; Brož, Miroslav (advisor) ; Vokrouhlický, David (referee)
In this thesis, we study how the planetary migration affects asteroid families. We identify the families among the Trojans of Jupiter by analysing their properties in the space of resonant elements, the size-frequency distribution and the colour indices. The previously reported number of families (10) seems to be overestimated, our analysis indicates that there is only one collisional family among Trojans with the parent-body size DPB > 100 km. We also performed a simulation of the long-term orbital evolution of the Trojan families. We used a modified version of the SWIFT symplectic integrator where the migration is set analytically. We found that the families are unstable even in the late stages of the migration, when Jupiter and Saturn recede from their mutual 1:2 resonance. Hence, the families observed today must have been created after the planetary migration ended. In the last part of the work, we study a formation of asteroid families in the Main Belt during the Late Heavy Bombardement. We simulate perturbations induced by migrating planets in the "jumping Jupiter" scenario (Morbidelli et al., 2010) and we conclude that big families (DPB > 200 km) created during the bombardement should be observable today.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.