National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Warehouse Simulation and Product Distribution Optimization for Increased Throughput
Kočica, Filip ; Kolář, Martin (referee) ; Kodym, Oldřich (advisor)
This thesis focuses on the storage location assignment problem using modern meta-heuristic techniques combined with realistic simulation. A graphical tool implemented as part of this work is capable of warehouse model creation, generation of synthetic customer orders, optimization of product allocation using state of the art techniques, extensive warehouse simulation, and a pathfinder capable of finding the shortest path for orders going through the system. The work presents the comparison between different approaches based on many parameters to reach the most efficient allocation of products to warehouse slots. The author conducted tests on an experimental warehouse featuring almost twice the throughput -- 57%. The benefit of this work is a possibility to create model of an already built warehouse and its simulation and optimization, driving impact on the throughput of the warehouse, saving the user's resources, or helping him in planning and bottle-neck identification. Furthermore, this thesis introduces a new approach to warehouse optimization and new optimization criteria.
Warehouse Simulation and Product Distribution Optimization for Increased Throughput
Kočica, Filip ; Kolář, Martin (referee) ; Kodym, Oldřich (advisor)
This thesis focuses on the storage location assignment problem using modern meta-heuristic techniques combined with realistic simulation. A graphical tool implemented as part of this work is capable of warehouse model creation, generation of synthetic customer orders, optimization of product allocation using state of the art techniques, extensive warehouse simulation, and a pathfinder capable of finding the shortest path for orders going through the system. The work presents the comparison between different approaches based on many parameters to reach the most efficient allocation of products to warehouse slots. The author conducted tests on an experimental warehouse featuring almost twice the throughput -- 57%. The benefit of this work is a possibility to create model of an already built warehouse and its simulation and optimization, driving impact on the throughput of the warehouse, saving the user's resources, or helping him in planning and bottle-neck identification. Furthermore, this thesis introduces a new approach to warehouse optimization and new optimization criteria.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.