National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Nucleation of Sulphuric Acid and Water - Laboratory and Atmospheric Observations
Krahulíková, Lenka
1 ABSTRACT: This study is dedicated to the study of nucleation of sulphuric acid and water, which presents the key process associated with secondary aerosol formation via gas to particle conversion. We investigated the nucleation rates, new aerosol particles formation and growth dynamics of newly nucleated particles. These processes were explored in both laboratory and field experiments. In the laboratory measurements, we explored the H2SO4 - H2O nucleation rates and growth rates of newly formed particles under well-defined conditions and we also investigated the effect of experimental conditions on particle growth dynamics. Furthermore, we proposed a model, which predicts the particle growth and accounts for condensation of H2SO4, H2O and NH3. The comparison of experimental growth rates with atmospheric ones was made and resulting implications of the chemical nature of compounds involved in the early growth of nucleated particles is also presented. To investigate the atmospheric H2SO4 - H2O nucleation and new particle formation, we analysed a two-year long dataset of particle number size distributions, obtained from a urban background station in Prague Suchdol. A special attention was given to a recently reported special feature of particle growth dynamics - a particle shrinkage following previous new...
Nucleation of Sulphuric Acid and Water - Laboratory and Atmospheric Observations
Krahulíková, Lenka
1 ABSTRACT: This study is dedicated to the study of nucleation of sulphuric acid and water, which presents the key process associated with secondary aerosol formation via gas to particle conversion. We investigated the nucleation rates, new aerosol particles formation and growth dynamics of newly nucleated particles. These processes were explored in both laboratory and field experiments. In the laboratory measurements, we explored the H2SO4 - H2O nucleation rates and growth rates of newly formed particles under well-defined conditions and we also investigated the effect of experimental conditions on particle growth dynamics. Furthermore, we proposed a model, which predicts the particle growth and accounts for condensation of H2SO4, H2O and NH3. The comparison of experimental growth rates with atmospheric ones was made and resulting implications of the chemical nature of compounds involved in the early growth of nucleated particles is also presented. To investigate the atmospheric H2SO4 - H2O nucleation and new particle formation, we analysed a two-year long dataset of particle number size distributions, obtained from a urban background station in Prague Suchdol. A special attention was given to a recently reported special feature of particle growth dynamics - a particle shrinkage following previous new...
Nucleation of Sulphuric Acid and Water - Laboratory and Atmospheric Observations
Škrabalová, Lenka ; Ždímal, Vladimír (advisor) ; Řezáčová, Daniela (referee) ; Bartovská, Lidmila (referee)
1 ABSTRACT: This study is dedicated to the study of nucleation of sulphuric acid and water, which presents the key process associated with secondary aerosol formation via gas to particle conversion. We investigated the nucleation rates, new aerosol particles formation and growth dynamics of newly nucleated particles. These processes were explored in both laboratory and field experiments. In the laboratory measurements, we explored the H2SO4 - H2O nucleation rates and growth rates of newly formed particles under well-defined conditions and we also investigated the effect of experimental conditions on particle growth dynamics. Furthermore, we proposed a model, which predicts the particle growth and accounts for condensation of H2SO4, H2O and NH3. The comparison of experimental growth rates with atmospheric ones was made and resulting implications of the chemical nature of compounds involved in the early growth of nucleated particles is also presented. To investigate the atmospheric H2SO4 - H2O nucleation and new particle formation, we analysed a two-year long dataset of particle number size distributions, obtained from a urban background station in Prague Suchdol. A special attention was given to a recently reported special feature of particle growth dynamics - a particle shrinkage following previous new...
Modelling of Sulfuric Acid Nanoparticles Growth
Škrabalová, Lenka ; Brus, D. ; Antilla, T. ; Ždímal, Vladimír ; Lihavainen, H.
Aerosol particles influence global radiative balance and climate directly through scattering and absorbing solar radiation and indirectly by acting as condensation cloud nuclei. The atmospheric nucleation is often followed by a rapid growth of freshly formed particles. The initial growth of aerosol is the crucial process determining the fraction of nucleated particles growing into cloud condensation nuclei sizes (~ 50 nm and larger). The subject of this study is modelling of growth behaviour of sulfuric acid nanoparticles produced by nucleation of water and sulfuric acid under wet and dry conditions.
Fulltext: content.csg - Download fulltextPDF
Plný tet: SKMBT_C22013101814581 - Download fulltextPDF
Modelling of Nanoparticles Growth in a Laminar Flow Tube
Škrabalová, Lenka
Fulltext: content.csg - Download fulltextPDF
Plný tet: SKMBT_C22013081915040 - Download fulltextPDF
Growth of Sulfuric Acid Nanoparticles at Wet and Dry Conditions
Škrabalová, Lenka ; Brus, D. ; Ždímal, Vladimír ; Lihavainen, H.
Aerosol particles influence global radiative balance and climate directly through scattering and absorbing solar radiation and indirectly by acting as condensation cloud nuclei. The atmospheric nucleation is often followed by a rapid growth of freshly formed particles. The initial growth of aerosol is the crucial process determining the fraction of nucleated particles growing into cloud condensation nuclei sizes (~ 50 nm and larger). Many recent studies have suggested that the sulfuric acid plays a key role in the atmospheric nucleation and subsequent growth of newly formed particles. (Sipilä et al., 2010). The subject of this experimental study is growth behaviour of sulfuric acid nanoparticles produced by homogenous nucleation at wet and dry conditions.
Fulltext: content.csg - Download fulltextPDF
Plný tet: SKMBT_C22012102615341 - Download fulltextPDF

Interested in being notified about new results for this query?
Subscribe to the RSS feed.