National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Maximization of ECG signals diagnostic yield
Beháňová, Andrea ; Smital, Lukáš (referee) ; Vítek, Martin (advisor)
This bachelor thesis deals with the maximization of ECG signals diagnostic yield. In the theoretical section we deal with the physiology of the heart, electrocardiography, types of ECG noises. It describes some known methods for the estimation of quality of the ECG signal. The practical section contains two parts. The first one contains a continuous Signal-to-Noise Ratio (SNR). It includes generating artificial ECG signal, artificial myopotentials and implementation of Adaptive Wiener Wiener Filtrate (AWWF). After verification of the correctness of the filter on the artificial data, we started to use real data from MIT-BIH database. The second part involves a segmentation process that divides the ECG signal into three categories: a signal suitable for full analysis, suitable for detection of QRS complexes and a signal unsuitable for further analysis.
Numerical Methods in Discrete Inverse Problems
Kubínová, Marie ; Hnětynková, Iveta (advisor) ; Gazzola, Silvia (referee) ; Meurant, Gerard (referee)
Title: Numerical Methods in Discrete Inverse Problems Author: Marie Kubínová Department: Department of Numerical Mathematics Supervisor: RNDr. Iveta Hnětynková, Ph.D., Department of Numerical Mathe- matics Abstract: Inverse problems represent a broad class of problems of reconstruct- ing unknown quantities from measured data. A common characteristic of these problems is high sensitivity of the solution to perturbations in the data. The aim of numerical methods is to approximate the solution in a computationally efficient way while suppressing the influence of inaccuracies in the data, referred to as noise, that are always present. Properties of noise and its behavior in reg- ularization methods play crucial role in the design and analysis of the methods. The thesis focuses on several aspects of solution of discrete inverse problems, in particular: on propagation of noise in iterative methods and its representation in the corresponding residuals, including the study of influence of finite-precision computation, on estimating the noise level, and on solving problems with data polluted with noise coming from various sources. Keywords: discrete inverse problems, iterative solvers, noise estimation, mixed noise, finite-precision arithmetic - iii -
Real-Time Estimation Of ECG Signal Quality
Beháňová, Andrea
In this study, we focus on the estimation of ECG signal quality. It consists of two parts, first includes generating artificial ECG, artificial myopotentials, implementation of Adaptive Wavelet Wiener Filter and continuous calculation of the Signal-to-Noise Ratio (SNR). The second part includes segmentation process, which sorts parts of ECG signal into three categories: suitable for full wave analysis, good for QRS detection and unsuitable for further processing.
Numerical Methods in Discrete Inverse Problems
Kubínová, Marie ; Hnětynková, Iveta (advisor) ; Gazzola, Silvia (referee) ; Meurant, Gerard (referee)
Title: Numerical Methods in Discrete Inverse Problems Author: Marie Kubínová Department: Department of Numerical Mathematics Supervisor: RNDr. Iveta Hnětynková, Ph.D., Department of Numerical Mathe- matics Abstract: Inverse problems represent a broad class of problems of reconstruct- ing unknown quantities from measured data. A common characteristic of these problems is high sensitivity of the solution to perturbations in the data. The aim of numerical methods is to approximate the solution in a computationally efficient way while suppressing the influence of inaccuracies in the data, referred to as noise, that are always present. Properties of noise and its behavior in reg- ularization methods play crucial role in the design and analysis of the methods. The thesis focuses on several aspects of solution of discrete inverse problems, in particular: on propagation of noise in iterative methods and its representation in the corresponding residuals, including the study of influence of finite-precision computation, on estimating the noise level, and on solving problems with data polluted with noise coming from various sources. Keywords: discrete inverse problems, iterative solvers, noise estimation, mixed noise, finite-precision arithmetic - iii -
Maximization of ECG signals diagnostic yield
Beháňová, Andrea ; Smital, Lukáš (referee) ; Vítek, Martin (advisor)
This bachelor thesis deals with the maximization of ECG signals diagnostic yield. In the theoretical section we deal with the physiology of the heart, electrocardiography, types of ECG noises. It describes some known methods for the estimation of quality of the ECG signal. The practical section contains two parts. The first one contains a continuous Signal-to-Noise Ratio (SNR). It includes generating artificial ECG signal, artificial myopotentials and implementation of Adaptive Wiener Wiener Filtrate (AWWF). After verification of the correctness of the filter on the artificial data, we started to use real data from MIT-BIH database. The second part involves a segmentation process that divides the ECG signal into three categories: a signal suitable for full analysis, suitable for detection of QRS complexes and a signal unsuitable for further analysis.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.