|
Optimization Techniques in Computer Graphics and Appearance Fabrication
Rittig, Tobias ; Wilkie, Alexander (advisor) ; Stamminger, Marc (referee) ; Lensch, Hendrik (referee)
Tobias Rittig Optimization Techniques in Computer Graphics and Appearance Fabrication Optimization, the process of improving an intermediate solution, has been applied in numerous fields of computer science and beyond. Visual computing has throughout been at the forefront of developing new techniques and applying them to synthesize or analyze visual reality. At the latest, the recent boom of deep learning has given attention to large- scale differentiable computation and the application of gradient-descent optimization. This thesis spans parts of this development in four shared first-author publications (three journal, one conference) and three co-authored journal papers. It shows how optimization algorithms are used in two distinct fields of computer graphics. First, the focus is on the emerging field of Appearance Fabrication using full-color 3D printing. We show the benefits of an iterative optimization loop on the sharpness and color accuracy of translucent printouts. Such a loop, consisting of a forward pre- diction and backward refinement, can be composed of various building blocks developed throughout the thesis. The forward prediction can be driven by accurate Monte Carlo path tracing or an approximate neural rendering solution. The backward refinement can rely on a heuristic or a gradient-descent...
|