National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
EHD Lubrication Film Behaviour under Rapid Change of Velocity and Load
Zimmerman, Martin ; Dzimko, Marián (referee) ; Návrat, Tomáš (referee) ; Dobeš, Petr (referee) ; Hartl, Martin (advisor)
This dissertation is focused on experimental study of lubricant film behavior under transient conditions. For real machine parts such as gears, roller bearings and cam mechanism the operating conditions such as speed, load and radius of curvature of rubbing surfaces are vary during the working cycle. Change in operating conditions may pose an increased risk of the lubricating film breakdown. Direct contact of rubbing surfaces at the time of the lubricating film breakdown causes an increase in friction and wear. The high-speed CMOS camera was used to record the dynamic changes in lubricating film thickness during the experiment. The optical interferometry method has been used for reverse reconstruction of lubricating film thickness of the recorded interferograms. It was confirmed that the operating parameters have a major impact on the formation of lubricant film and its thickness and a certain combination of boundary conditions can cause lubricating film rupture. The obtained results showed, that modified topography of the rubbing surfaces can help to increase the lubrication film thickness especially in critical phases of working cycle.
EHD Lubrication Film Behaviour under Rapid Change of Velocity and Load
Zimmerman, Martin ; Dzimko, Marián (referee) ; Návrat, Tomáš (referee) ; Dobeš, Petr (referee) ; Hartl, Martin (advisor)
This dissertation is focused on experimental study of lubricant film behavior under transient conditions. For real machine parts such as gears, roller bearings and cam mechanism the operating conditions such as speed, load and radius of curvature of rubbing surfaces are vary during the working cycle. Change in operating conditions may pose an increased risk of the lubricating film breakdown. Direct contact of rubbing surfaces at the time of the lubricating film breakdown causes an increase in friction and wear. The high-speed CMOS camera was used to record the dynamic changes in lubricating film thickness during the experiment. The optical interferometry method has been used for reverse reconstruction of lubricating film thickness of the recorded interferograms. It was confirmed that the operating parameters have a major impact on the formation of lubricant film and its thickness and a certain combination of boundary conditions can cause lubricating film rupture. The obtained results showed, that modified topography of the rubbing surfaces can help to increase the lubrication film thickness especially in critical phases of working cycle.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.