National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Active Filters and their Transformation to Differential Structures
Bečková, Zuzana ; Herencsár, Norbert (referee) ; Vrba, Kamil (advisor)
Bachelor thesis is considered with transformation of single--ended frequency filters to fully--differential structures. Theoretical part contains a brief introduction to frequency filters and short summary of important features of signal flow graphs. Active elements, which are used in designed filters, are shown in the third chapter. Practical part of the thesis shows five single-ended filters (one already published, four newly designed) and their transformation to fully-differential structures. Results of simulations in programms OrCAD and SNAP are shown.
Fully-differential frequency filters with nontraditional active elements
Dvořák, Jan ; Koton, Jaroslav (referee) ; Jeřábek, Jan (advisor)
Bachelor's thesis deals with designs of fully-differential frequency filters which operate in current mode where it is possible to control their parameters by change the transconductance or the amplification. The first part divides and describes in general frequency filters. Furthermore, there are described active elements together with their simple simulation models. The second part describes the design of frequency filter by M-C signal-flow graph and methods of transforming final circuit to fully-differential structure. Next part presents several structures of the second-order filter with their simulations in non-differential and fully-differential forms. Last part presents designs of boards of printed circuits and measurement results of two chosen circuits.
Analysis of differential and non-differential filtering structures with adjustable current amplifier
Dvořák, Jan ; Vrba, Kamil (referee) ; Jeřábek, Jan (advisor)
The master thesis deals with designs of the single-ended and the fully-differential secondorder frequency filters with adjustable parameters. This filters operate in the current mode where main element is the current amplifier DACA (Digitally Adjustable Current Amplifier). The first part describes basic behaviour of frequency filters and distribution according to filter funcion, used parts and structure. The second part of thesis describes the design of the frequency filters by the M-C signal-flow graphs and the transformating single-ended structures to the fully-differential forms. The next part deals with properties of the active elements and their simulation models. The following part describe six circuits of the frequency filters with adjustable parameters and their simulations. Four simulation models with different properties were used for simulating of the DACA in the each circuits. The last part deals with the practical design and measurement of the selected frequency filters.
Active Filters and their Transformation to Differential Structures
Bečková, Zuzana ; Herencsár, Norbert (referee) ; Vrba, Kamil (advisor)
Bachelor thesis is considered with transformation of single--ended frequency filters to fully--differential structures. Theoretical part contains a brief introduction to frequency filters and short summary of important features of signal flow graphs. Active elements, which are used in designed filters, are shown in the third chapter. Practical part of the thesis shows five single-ended filters (one already published, four newly designed) and their transformation to fully-differential structures. Results of simulations in programms OrCAD and SNAP are shown.
Fully-differential frequency filters with nontraditional active elements
Dvořák, Jan ; Koton, Jaroslav (referee) ; Jeřábek, Jan (advisor)
Bachelor's thesis deals with designs of fully-differential frequency filters which operate in current mode where it is possible to control their parameters by change the transconductance or the amplification. The first part divides and describes in general frequency filters. Furthermore, there are described active elements together with their simple simulation models. The second part describes the design of frequency filter by M-C signal-flow graph and methods of transforming final circuit to fully-differential structure. Next part presents several structures of the second-order filter with their simulations in non-differential and fully-differential forms. Last part presents designs of boards of printed circuits and measurement results of two chosen circuits.
Analysis of differential and non-differential filtering structures with adjustable current amplifier
Dvořák, Jan ; Vrba, Kamil (referee) ; Jeřábek, Jan (advisor)
The master thesis deals with designs of the single-ended and the fully-differential secondorder frequency filters with adjustable parameters. This filters operate in the current mode where main element is the current amplifier DACA (Digitally Adjustable Current Amplifier). The first part describes basic behaviour of frequency filters and distribution according to filter funcion, used parts and structure. The second part of thesis describes the design of the frequency filters by the M-C signal-flow graphs and the transformating single-ended structures to the fully-differential forms. The next part deals with properties of the active elements and their simulation models. The following part describe six circuits of the frequency filters with adjustable parameters and their simulations. Four simulation models with different properties were used for simulating of the DACA in the each circuits. The last part deals with the practical design and measurement of the selected frequency filters.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.