National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Fabrication of metal nanoclusters and their characterization
Kratochvíl, Jiří ; Kylián, Ondřej (advisor) ; Kousal, Jaroslav (referee)
Copper nanoclusters have potencial for fabrication of nanostructured surfaces, which can be used in electronics, electrotechnics, optics and in biomedical applications. To create such surfaces, it is necessary to create and characterize the nanoclusters deeply first and this is the main topic of this work. First, we found repeatable procedure to create copper nanoclusters by the gas aggregation nanocluster source. We studied homogenity of prepared surfaces by quartz crystal microbalance and optical ellipsometry, we determined conditions for deposition of homogeneous coatings. Next, we studied deposition rate in dependence on the magnetron current, pressure in the aggregation and deposition chambers. Deposition rate linearly increased with current, but in low currents it was nearly zero. Furthermore, we found maximum deposition rate for a given pressure in the aggregation chamber and determined the range of pressure in deposition chamber where it is possible to deposit thin films of copper nanoclusters. This is important for fabrication of nanocomposite surfaces. We studied also the size, shape of nanoclusters and growth of surface by scanning electron microscope. The surfaces were very porous. We measured roughness and optical absorbance where anomalous optical absorption was found. Finally, we found that...
Fabrication of metal nanoclusters and their characterization
Kratochvíl, Jiří ; Kylián, Ondřej (advisor) ; Kousal, Jaroslav (referee)
Copper nanoclusters have potencial for fabrication of nanostructured surfaces, which can be used in electronics, electrotechnics, optics and in biomedical applications. To create such surfaces, it is necessary to create and characterize the nanoclusters deeply first and this is the main topic of this work. First, we found repeatable procedure to create copper nanoclusters by the gas aggregation nanocluster source. We studied homogenity of prepared surfaces by quartz crystal microbalance and optical ellipsometry, we determined conditions for deposition of homogeneous coatings. Next, we studied deposition rate in dependence on the magnetron current, pressure in the aggregation and deposition chambers. Deposition rate linearly increased with current, but in low currents it was nearly zero. Furthermore, we found maximum deposition rate for a given pressure in the aggregation chamber and determined the range of pressure in deposition chamber where it is possible to deposit thin films of copper nanoclusters. This is important for fabrication of nanocomposite surfaces. We studied also the size, shape of nanoclusters and growth of surface by scanning electron microscope. The surfaces were very porous. We measured roughness and optical absorbance where anomalous optical absorption was found. Finally, we found that...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.