National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Development of methodology for study of mechanical activation of chemical reactions at phase boundaries
Matoušek, David ; Kalina, Lukáš (referee) ; Šoukal, František (advisor)
This Bachelor thesis deals with impact of mechanochemical activation on a nature of interphase region in macro-defect-free composites (MDF). MDF composites are highly perspective material on a polymer-cement basis. The most significant advantage of this material is high flexural strength (cca 150 MPa). High strength is caused by high-shear mixing of mixture of cement, polymer, water and plasticiser in twin-roll mill. High-shear stress leads to mechanical activation of reactions between cement and polymer and creation of weak or even strong interactions in interphase region. This work aimed on creation of interphase region by contact of surfaces of two moulded tablets – polyvinyl alcohol and monocalcium aluminate. Next step was construction of simple apparatus, able to define the rate of mechanical activation in interphase region. The most important part of this work concentrated on analysis of activated interphase region by XPS.
Development of methodology for study of mechanical activation of chemical reactions at phase boundaries
Matoušek, David ; Kalina, Lukáš (referee) ; Šoukal, František (advisor)
This Bachelor thesis deals with impact of mechanochemical activation on a nature of interphase region in macro-defect-free composites (MDF). MDF composites are highly perspective material on a polymer-cement basis. The most significant advantage of this material is high flexural strength (cca 150 MPa). High strength is caused by high-shear mixing of mixture of cement, polymer, water and plasticiser in twin-roll mill. High-shear stress leads to mechanical activation of reactions between cement and polymer and creation of weak or even strong interactions in interphase region. This work aimed on creation of interphase region by contact of surfaces of two moulded tablets – polyvinyl alcohol and monocalcium aluminate. Next step was construction of simple apparatus, able to define the rate of mechanical activation in interphase region. The most important part of this work concentrated on analysis of activated interphase region by XPS.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.