National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Controlling and Evaluation of Laser Micromanipulation Experiments
Kaňka, Jan ; Jákl, Petr (referee) ; Provazník, Ivo (advisor)
This work is focused on the development of a user friendly software interface using the LabViewTM environment that simplifies running of various experiments using laser micromanipulations and laser microspectroscopy of living microorganisms. Both techniques have been developing very fast for the last decade and belong to the growing group of contact-less and nondestructive techniques for manipulation and diagnostics of individual living microorganisms, cells, or viruses. Within this project we mastered the driving of peripheries, calibration of CCD scene, real-time image processing of the CCD scene, automatic selection of the cell for further laser processing, acquisition and processing of the Raman spectrum from living microorganisms. The final goal of our activity is fully automatic laser-based sorter of living cells depending on their chemical compositions. This work has been elaborated at the Institute of Scientific Instruments of the ASCR, v.v.i. under the supervision of prof. Pavel Zemanek.
Gene expression in chicken embryo: micromanipulation and visualization methods
Bendová, Michaela
The aim of this work was to obtain better insight into the principles of cell structures and organs in the chicken embryo development. To reach this goal special methods of micromanipulations and visualization in vitro, ex vivo, ex ovo and in ovo were implemented and adjusted. These methods were used to study gene expression in neural crest development and eye development. In the course of long term research in our laboratory we observed that oncoprotein v-Myb influences the development of the neural crest and has the capacity to change natural cell fate. We performed a series of experiments to investigate v-Myb protein influence on neural crest cells differentiation, especially melanocyte lineage development, and its influence on gene expression in the neural crest. Therefore we focused on Gremlin 2 (PRDC), the gene upregulated by v-Myb in the neural crest. The established procedure of electroporation in ovo was adjusted to transfect cells of the developing eye and used to study gene expression during lens induction. The results obtained from chicken embryo experiments endorsed the study performed on mouse embryos. Futhermore, the electroporation technique was slightly modified for manipulations of the neural retina in the developing eye in ovo. Thereafter, the retinas were processed ex vivo and...
Fabrication and testing of MEMS device components for micromanipulation
Binková, Petra ; Prášek, Jan (referee) ; Liška, Jiří (advisor)
This diploma thesis deals with the production and testing of MEMS devices intended for micromanipulations with a possibility of their usage in a scanning electron microscope, which includes manipulation of microobjects such as metal microparticles, microfibres or even biological samples. The first chapter contains a detailed study of microsystems and MEMS devices. The next chapter describes various types of micromanipulations, including MEMS. The third chapter deals with possible techniques of microfabrication. The fourth chapter contains experimental part of this work, in which two versions of silicon microgrippers were proposed. Considering available solutions of micromanipulators, principal and spatial limitations in the electron microscope, the piezoelectric actuator was chosen as the gripping principle. Direct write laser lithography and deep reactive ion etching were used to produce the microgrippers, and it was necessary to optimize these techniques for selected application. During the optimizations, various problems were solved, including the elimination of black silicon formation, unsuccessful etching of narrow deep structures, etc. Prototype of one of the proposed microgripper was successfully created. The manufactured micromanipulators were subsequently tested under an optical microscope. During testing, it was necessary to modify the position of the actuator in the device to ensure that the jaws of the manipulator are clamped.
Gene expression in chicken embryo: micromanipulation and visualization methods
Bendová, Michaela ; Dvořák, Michal (advisor) ; Hirsch, Ivan (referee) ; Krylov, Vladimír (referee)
The aim of this work was to obtain better insight into the principles of cell structures and organs in the chicken embryo development. To reach this goal special methods of micromanipulations and visualization in vitro, ex vivo, ex ovo and in ovo were implemented and adjusted. These methods were used to study gene expression in neural crest development and eye development. In the course of long term research in our laboratory we observed that oncoprotein v-Myb influences the development of the neural crest and has the capacity to change natural cell fate. We performed a series of experiments to investigate v-Myb protein influence on neural crest cells differentiation, especially melanocyte lineage development, and its influence on gene expression in the neural crest. Therefore we focused on Gremlin 2 (PRDC), the gene upregulated by v-Myb in the neural crest. The established procedure of electroporation in ovo was adjusted to transfect cells of the developing eye and used to study gene expression during lens induction. The results obtained from chicken embryo experiments endorsed the study performed on mouse embryos. Futhermore, the electroporation technique was slightly modified for manipulations of the neural retina in the developing eye in ovo. Thereafter, the retinas were processed ex vivo and...
Gene expression in chicken embryo: micromanipulation and visualization methods
Bendová, Michaela ; Dvořák, Michal (advisor) ; Hirsch, Ivan (referee) ; Krylov, Vladimír (referee)
The aim of this work was to obtain better insight into the principles of cell structures and organs in the chicken embryo development. To reach this goal special methods of micromanipulations and visualization in vitro, ex vivo, ex ovo and in ovo were implemented and adjusted. These methods were used to study gene expression in neural crest development and eye development. In the course of long term research in our laboratory we observed that oncoprotein v-Myb influences the development of the neural crest and has the capacity to change natural cell fate. We performed a series of experiments to investigate v-Myb protein influence on neural crest cells differentiation, especially melanocyte lineage development, and its influence on gene expression in the neural crest. Therefore we focused on Gremlin 2 (PRDC), the gene upregulated by v-Myb in the neural crest. The established procedure of electroporation in ovo was adjusted to transfect cells of the developing eye and used to study gene expression during lens induction. The results obtained from chicken embryo experiments endorsed the study performed on mouse embryos. Futhermore, the electroporation technique was slightly modified for manipulations of the neural retina in the developing eye in ovo. Thereafter, the retinas were processed ex vivo and...
Controlling and Evaluation of Laser Micromanipulation Experiments
Kaňka, Jan ; Jákl, Petr (referee) ; Provazník, Ivo (advisor)
This work is focused on the development of a user friendly software interface using the LabViewTM environment that simplifies running of various experiments using laser micromanipulations and laser microspectroscopy of living microorganisms. Both techniques have been developing very fast for the last decade and belong to the growing group of contact-less and nondestructive techniques for manipulation and diagnostics of individual living microorganisms, cells, or viruses. Within this project we mastered the driving of peripheries, calibration of CCD scene, real-time image processing of the CCD scene, automatic selection of the cell for further laser processing, acquisition and processing of the Raman spectrum from living microorganisms. The final goal of our activity is fully automatic laser-based sorter of living cells depending on their chemical compositions. This work has been elaborated at the Institute of Scientific Instruments of the ASCR, v.v.i. under the supervision of prof. Pavel Zemanek.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.