National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Preparation of functionalized polyacetylenes with linear and cross-linked architecture
Havelková, Lucie ; Sedláček, Jan (advisor) ; Balcar, Hynek (referee)
The phenylacetylene type monomers with benzene ring substituted with one or two aldehyde groups (besides an ethynyl group) were efficiently polymerized into linear mostly high-molecular-weight polyacetylenes with aldehyde groups in pendants if the complex [Rh(NBD)acac] was used as the polymerization catalyst. To achieve high yield and molecular weight of the polymer the positioning of the aldehyde group to meta position with respect to the ethynyl group was most appropriate. It was confirmed that polyacetylenes with aldehyde groups were modifiable by a reaction with p-toluidine under formation of Schiff base type pendant groups. 1,3-Diethynylbenzenes with various substituents in position 5 on the ring (R = H, F, Cl, Br, HCO, NO2, COOCH3) were efficiently polymerized with [Rh(NBD)acac] catalyst into microporous or micro/mesoporous polyacetylene networks that exhibited specific surface area from 311 to 1146 m2 /g. In the case of the networks with HC=O groups, the positive effect of these groups was confirmed on the capacity of the network in CO2 and methanol vapor capture. The composition and texture of the networks possessing HC=O groups were partly reversibly modifiable in reaction with p-toluidine.
Preparation of functionalized polyacetylenes with linear and cross-linked architecture
Havelková, Lucie ; Sedláček, Jan (advisor) ; Balcar, Hynek (referee)
The phenylacetylene type monomers with benzene ring substituted with one or two aldehyde groups (besides an ethynyl group) were efficiently polymerized into linear mostly high-molecular-weight polyacetylenes with aldehyde groups in pendants if the complex [Rh(NBD)acac] was used as the polymerization catalyst. To achieve high yield and molecular weight of the polymer the positioning of the aldehyde group to meta position with respect to the ethynyl group was most appropriate. It was confirmed that polyacetylenes with aldehyde groups were modifiable by a reaction with p-toluidine under formation of Schiff base type pendant groups. 1,3-Diethynylbenzenes with various substituents in position 5 on the ring (R = H, F, Cl, Br, HCO, NO2, COOCH3) were efficiently polymerized with [Rh(NBD)acac] catalyst into microporous or micro/mesoporous polyacetylene networks that exhibited specific surface area from 311 to 1146 m2 /g. In the case of the networks with HC=O groups, the positive effect of these groups was confirmed on the capacity of the network in CO2 and methanol vapor capture. The composition and texture of the networks possessing HC=O groups were partly reversibly modifiable in reaction with p-toluidine.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.