National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Use of optical and microfluidic techniques for analysis and separation of microbial cells
Večeríková, Paula ; Bernatová,, Silvie (referee) ; Samek,, Ota (advisor)
The presented diploma thesis primarily focuses on Raman spectroscopy and its connections to microfluidic techniques, along with potentially biotechnologically interesting products of bacterial strains Janthinobacterium lividum and Azotobacter vinelandii. The methods were chosen for their non-destructive nature, which allows for rapid cell analysis and comparison with gas chromatography. After analysis, cells can be further cultivated or a generation with excessive production of a selected metabolite can be prepared. Janthinobacterium lividum is a bacterial strain that produces the pigment violacein, which has significant biotechnological potential as a drug, antioxidant, fluorescent probe, or dye. The ability to distinguish between cells producing and not producing violacein can have wide applications in diagnosis and identification. In the experimental part, the spectra of three strains were measured, based on which Janthinobacterium lividum CCM 160 was selected for analysis using Raman tweezers, along with Cupriavidus necator H16. By evaluating with principal component analysis, the distinguishability of pigmented cultures from non-pigmented ones was determined, and a potential sorting marker of 1 140 cm-1 (corresponding to violacein) was selected for further measurements. The biotechnological potential of the Azotobacter vinelandii strain lies in its ability to fix nitrogen from the atmosphere, produce alginate, and polyhydroxybutyrate. The experimental part of the thesis focuses on identifying Raman spectra of five strains and the extracted alginates from them. Polyhydroxybutyrate (PHB) is a biodegradable polymer that replaces petrochemical plastics. For PHB production, Azotobacter vinelandii is an adept for commercial production, as it is one of the few that produces PHB directly from atmospheric nitrogen, which can lead to reduced production costs and thus higher representation of degradable plastics in the market. The highest response for PHB in Raman spectra was measured for Azotobacter vinelandii DSM 720 and the lowest for Azotobacter vinelandii DSM 85. Quantitative information for comparison was obtained from gas chromatography, which confirmed the measurements from Raman spectroscopy. By evaluating the measured Raman spectra of pure alginates, it is possible to assume that they are heteropolymeric fractions, as the spectra showed the expression of various monomers. Depending on the composition of subunits, the properties of alginate change, so it is necessary to know the composition for its adjustment for further use in medicine or the food industry. From the five Azotobacter vinelandii strains, producers with the highest and lowest PHB content were selected, which were subsequently analysed using Raman tweezers. By evaluating with principal component analysis, the distinguishability of these strains and their separability using the sorting parameter of 1 060 cm-1 was determined.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.