National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Study of Perovskite Type Oxide Catalysts for Partial Oxidation of Methane
Cihlář, Jaroslav ; Hanykýř, Vladimír (referee) ; Čapek,, Libor (referee) ; Čičmanec,, Pavel (advisor)
Research was curried out on the perovskite systems with general formula A1-xA‘xB1-yB‘yO3± (where A=La, Sm, A´=Ca, B´=Al, B=Co,Fe,Mn and Cr). Perovskite oxides were sythesized by polymerisation methods and characterised by RTG analysis, BET method, SEM and EDX. TPD spectra and catalyst testing were measured in high temperature plug flow reactor and products were analysed by mass spectrometry. It was found, that metane oxidation at ratio O2/CH40,5 depended on the temperature. Total oxidation proceeded at the temperature betwen 300-700oC to the carbon dioxide and water, while the partial oxidation of metane (POM) occured at above 700oC to the hydrogen and carbon oxid (syngas). This was ascribed by equilibrium of O2 betwen gas phase and solid perovskite. There was used 12 perovskite systems, which catalysed methane oxidation by the same way. Dry reforming of methane run above temperature 700oC. Cobaltite and ferite type perovskites were found as the most active catalytic systems. On the base of obtained results the Mars van Krevelen mechanism was established for explanation of oxidation and reformation of methane by perovskite systems. It was showed, that POM was running by two steps mechanism. Products of total oxidation was occured in the first step, which were passed over to the syngas (H2+CO) in the second step.
Aktivita a výskyt metanotrofních bakterií v povrchových vodách řeky Labe
MATOUŠŮ, Anna
During this PhD. thesis, the importance of methane-oxidizing bacteria (methanotrophs) and their ecological demands were studied on the longitudinal transect along an important European river - the River Elbe. However, it was necessary to adjust methodologies for precise measurements of methane oxidation in such a variable aquatic environment. Based on laboratory experiments and field measurements, several key methodological recommendations for future planning of methane oxidation rate estimations in an unknown environment have been identified or specified. In line with the variability of the river habitats, considerable heterogeneity was also found in the obtained data on methane concentration and methanotrophical activity. Probably, some of the most important information gathered during many field sampling campaigns is that sites with the highest methane concentration usually showed a very low activity of methanotrophic bacteria (resulting in higher methane emissions). These sites are predominantly human modified sections of the river, such as locks, weirs, harbors and canals. On the contrary, the free-flowing parts of the river, modified only by groynes, showed low level of methane concentration. And so groynes could represent a more effective solution and "natural-close" habitats of navigability of rivers.
Study of Perovskite Type Oxide Catalysts for Partial Oxidation of Methane
Cihlář, Jaroslav ; Hanykýř, Vladimír (referee) ; Čapek,, Libor (referee) ; Čičmanec,, Pavel (advisor)
Research was curried out on the perovskite systems with general formula A1-xA‘xB1-yB‘yO3± (where A=La, Sm, A´=Ca, B´=Al, B=Co,Fe,Mn and Cr). Perovskite oxides were sythesized by polymerisation methods and characterised by RTG analysis, BET method, SEM and EDX. TPD spectra and catalyst testing were measured in high temperature plug flow reactor and products were analysed by mass spectrometry. It was found, that metane oxidation at ratio O2/CH40,5 depended on the temperature. Total oxidation proceeded at the temperature betwen 300-700oC to the carbon dioxide and water, while the partial oxidation of metane (POM) occured at above 700oC to the hydrogen and carbon oxid (syngas). This was ascribed by equilibrium of O2 betwen gas phase and solid perovskite. There was used 12 perovskite systems, which catalysed methane oxidation by the same way. Dry reforming of methane run above temperature 700oC. Cobaltite and ferite type perovskites were found as the most active catalytic systems. On the base of obtained results the Mars van Krevelen mechanism was established for explanation of oxidation and reformation of methane by perovskite systems. It was showed, that POM was running by two steps mechanism. Products of total oxidation was occured in the first step, which were passed over to the syngas (H2+CO) in the second step.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.