National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Mechanical alloying and compactization of metallic composite powders
Husák, Roman ; Čelko, Ladislav (referee) ; Hadraba, Hynek (advisor)
Master´s thesis is focus on the proces of mechanical alloying. It is the proces of modifying a hetegeneous mixture of powder materials into a homogeneous composite powder. Experiments are focus on three types of composite materials. A magnetic soft alloy Permalloy, ODS steel based on commercially available powder steel 434 LHC and low-activation high-chrome ODS steel 14Cr-2W. On composite powders are made a series of mechanical tests and chemicel analysis. Based on this tests and analysis it was possible to confirm the milling time needed to create fully homogeneous composite powder. Next step is compaction of composite powder into compact volume and another mechanical tests ana analysis of microstructure. In these analyzes to determine whether i tis necessary to use protective atmosphere during mechanical alloying. All three type of materials succesfull prepared by mechanical alloying. It was found that for created of a fully homogeneous composite powder is necessary to perform mechanical alloying for 24 hours. When processing of corrosion resistant materials, i tis possible to perform mechanical alloying in an air atmosphere. During mechanical alloying materials which are subject to oxidation, i tis necessary to use protective atmosphere.
Mechanical alloying and compactization of metallic composite powders
Husák, Roman ; Čelko, Ladislav (referee) ; Hadraba, Hynek (advisor)
Master´s thesis is focus on the proces of mechanical alloying. It is the proces of modifying a hetegeneous mixture of powder materials into a homogeneous composite powder. Experiments are focus on three types of composite materials. A magnetic soft alloy Permalloy, ODS steel based on commercially available powder steel 434 LHC and low-activation high-chrome ODS steel 14Cr-2W. On composite powders are made a series of mechanical tests and chemicel analysis. Based on this tests and analysis it was possible to confirm the milling time needed to create fully homogeneous composite powder. Next step is compaction of composite powder into compact volume and another mechanical tests ana analysis of microstructure. In these analyzes to determine whether i tis necessary to use protective atmosphere during mechanical alloying. All three type of materials succesfull prepared by mechanical alloying. It was found that for created of a fully homogeneous composite powder is necessary to perform mechanical alloying for 24 hours. When processing of corrosion resistant materials, i tis possible to perform mechanical alloying in an air atmosphere. During mechanical alloying materials which are subject to oxidation, i tis necessary to use protective atmosphere.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.