National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Rhythmic function of placenta and the impact of disruption in maternal-placental-fetal axis
Světlíková, Nela ; Sumová, Alena (advisor) ; Pačesová, Dominika (referee)
In mammals, the circadian rhythms result of a complex endogenous system consisting of hierarchically organized oscillators. The system enables the synchronization of the organism's internal processes with the external environment. It consists of the main component, the central clock, located in the suprachiasmatic nuclei in the hypothalamus, and peripheral clocks in other cells, tissues and organs. The placenta is a temporary, specialized mammalian organ that is part of the mother-placenta-fetus axis and exhibits rhythmicity in its functions. The aim of this thesis is to summarize the rhythmic functions of the placenta, such as immunity, protection, and production of hormones and other mediators that play an important role in fetal development and pregnancy. In addition, the thesis also describes rhythmic changes, that occur during pregnancy in the mother-placenta-fetus axis and how these rhythms influence each other. Keywords Placenta, circadian clock, ontogenesis, fetus, maternal synchronization, hormones, enzymes, immunity
Synchronization of circadian system during prenatal and early postnatal development
Houdek, Pavel ; Sumová, Alena (advisor) ; Novotná, Růžena (referee)
One of the few attributes common to almost all living organisms is an ability to generate and maintain endogenous rhythms, which are controlled by a biological clock. The processes, which recur with a period of about 24 hours, are known as the circadian rhythms. The circadian clock controls rhythms of molecular, physiological as well as behavioral processes and adapts their activity to regularly appearing changes in day and night or season. In case of mammals, central oscillator is located in the hypothalamic suprachiasmatic nuclei (SCN). The SCN clock entrains rhythms of peripheral oscillators located in cells of other tissues. The central oscillator itself is synchronized with external environment mainly by a light-dark cycle, however, other cues can entrain the SCN clock as well. For example, during prenatal development, entrainment of a fetal clock is entirely dependent on non-photic cues derived from maternal organism. This study aimed to investigate a mechanism of the communication between the maternal and fetal central oscillators. A hypothesis was tested whether maternal melatonin may play a role in entrainment of the circadian clock in the fetal SCN. Furthermore, a mechanism, how melatonin may entrain the fetal clock was investigated at molecular level. The results provided evidence, that...
Synchronization of circadian system during prenatal and early postnatal development
Houdek, Pavel ; Sumová, Alena (advisor) ; Novotná, Růžena (referee)
One of the few attributes common to almost all living organisms is an ability to generate and maintain endogenous rhythms, which are controlled by a biological clock. The processes, which recur with a period of about 24 hours, are known as the circadian rhythms. The circadian clock controls rhythms of molecular, physiological as well as behavioral processes and adapts their activity to regularly appearing changes in day and night or season. In case of mammals, central oscillator is located in the hypothalamic suprachiasmatic nuclei (SCN). The SCN clock entrains rhythms of peripheral oscillators located in cells of other tissues. The central oscillator itself is synchronized with external environment mainly by a light-dark cycle, however, other cues can entrain the SCN clock as well. For example, during prenatal development, entrainment of a fetal clock is entirely dependent on non-photic cues derived from maternal organism. This study aimed to investigate a mechanism of the communication between the maternal and fetal central oscillators. A hypothesis was tested whether maternal melatonin may play a role in entrainment of the circadian clock in the fetal SCN. Furthermore, a mechanism, how melatonin may entrain the fetal clock was investigated at molecular level. The results provided evidence, that...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.